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A Novel Integrative Framework for Hybrid Energy Modeling in Non-Domestic Buildings:
Bridging Data-Driven and Physics-Based Approaches for Global Sustainability
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Abstract: The building sector is a predominant contributor to global energy consumption and
carbon dioxide emissions, with non-domestic buildings presenting unique challenges due to their
operational complexity and heterogeneous profiles. While advancements in data-driven (DD)
and physics-based (PB) modeling have independently progressed, a siloed approach persists,
limiting scalable and robust energy performance forecasting and optimization. This paper
presents a comprehensive review and, subsequently, proposes a novel integrative framework for
hybrid energy modeling tailored for non-domestic buildings. We conduct a systematic analysis
of DD methods—spanning statistical models, classical machine learning (ML), deep learning
(DL), and ensemble techniques—and PB approaches, including simulation tools and engineering
calculations. The review critically evaluates each paradigm's strengths regarding accuracy,
interpretability, scalability, and data dependency, revealing a significant research gap in Africa
and a need for standardized, transferable solutions. Synthesizing these insights, we introduce the
Integrated Hybrid Modeling and Transfer Learning Framework (IHM-TLF). This framework
architecturally couples PB and DD models through sequential calibration, surrogate-assisted
optimization, and physics-informed learning pathways. It explicitly incorporates adaptive
transfer learning modules and data fusion strategies to overcome pervasive data scarcity and
heterogeneity challenges. Furthermore, the framework is contextualized within a policy-
supportive structure, aligning technical model outputs with actionable energy -efficiency
measures (EEMs), retrofit planning, and benchmarking protocols. The paper delineates a detailed
validation pathway for the IHM-TLF, discusses its implementation barriers, and posits its
potential to significantly enhance energy resilience, reduce operational costs, and support
decarbonization targets, particularly in underrepresented and rapidly developing regions. This
work aims to provide researchers, building managers, and policymakers with a unified,
pragmatic roadmap for advancing building energy science toward global sustainability goals.

Keywords: building energy efficiency; hybrid energy modeling; data-driven models; physics-
based simulation; transfer learning; non-domestic buildings, sustainable infrastructure;
machine learning

21st  century (IPCC, 2023). The built
environment is a critical focal point in this
crisis, responsible for approximately 30% of
global final energy consumption and 26% of
energy-related  emissions  (International
Energy Agency [IEA], 2023). Within this

1. Introduction

Anthropogenic  climate change, driven
predominantly by greenhouse gas emissions
from energy production and consumption,

represents the defining global challenge of the
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sector, non-domestic buildings—
encompassing commercial, institutional, and
industrial structures—are particularly
significant due to their intensive energy use
profiles, complex systems, and diverse
occupancy  patterns  (Santamouris &
Vasilakopoulou, 2021). The imperative to
decarbonize the global economy has thus
placed unprecedented emphasis on optimizing
the energy performance of these buildings
through accurate forecasting, intelligent
management, and effective retrofitting.

Accurately modeling and predicting building
energy performance is the cornerstone of

effective  energy management systems
(BEMS).  Historically, two  principal
methodological streams have evolved:

physics-based (PB) and data-driven (DD)
modeling. PB models, also known as white-
box models, utilize first principles of
thermodynamics, heat transfer, and fluid
dynamics to simulate building behavior. Tools
like EnergyPlus, TRNSYS, and IDA ICE
enable detailed simulation of energy flows,
offering high accuracy and valuable insights
into system interactions (Mazzeo et al., 2020).
However, their utility is often constrained by
the need for extensive, high-quality input data

(e.g., detailed geometric, material, and
operational schedules), significant
computational  resources, and  expert

knowledge for calibration—factors that limit
their scalability for large building stocks or
real-time applications (Azar et al., 2020).

Conversely, DD models, or black-box models,
employ statistical and machine learning (ML)
techniques to discern patterns directly from
historical operational data. This category
includes regression models, support vector
machines (SVM), artificial neural networks
(ANN), random forests (RF), and deep
learning architectures like long short-term
memory networks (LSTM) and convolutional
neural networks (CNN) (Fan et al., 2019). DD
models excel in contexts with abundant data,
offering flexibility, computational efficiency
for forecasting, and the ability to model non-

linear relationships without explicit physical
knowledge (Deb & Schlueter, 2021). Their
primary limitations include a reliance on large,
high-fidelity datasets, poor performance in
data-scarce scenarios, lack of interpretability

("black-box" nature), and limited
generalizability  beyond  their training
conditions (Himeur et al., 2023).

The dichotomy between PB and DD

approaches has led to parallel research tracks.
While recent review articles have
comprehensively surveyed one domain or the
other, few have successfully synthesized them
into a coherent, actionable framework that
leverages their complementary strengths
(Grillone et al., 2020; Sun et al.,, 2020).
Furthermore, existing literature exhibits a
pronounced geographical bias. Significant
research originates from North America,
Europe, and parts of Asia, where data
infrastructure and policy frameworks are
mature (see Figure 1). In contrast, regions like
Africa, which face acute energy challenges,
rapid urbanization, and unique climatic
conditions, remain critically understudied
(Adom, 2019; Tachega et al., 2021). This gap
not only represents a scientific oversight but
also a missed opportunity to develop resilient,
context-appropriate solutions for a significant
portion of the global building stock.

This paper addresses these gaps through two
primary contributions. First, it provides a
systematic, comparative review of PB and DD
modeling techniques for non-domestic
buildings, updating the state-of-the-art with
recent advances in hybrid modeling and
transfer learning. Second, and more
significantly, it proposes a novel Integrated
Hybrid Modeling and Transfer Learning
Framework (IHM-TLF). This framework is
not merely conceptual; it provides a structured
architectural blueprint for combining PB and
DD models through specific coupling
mechanisms. It integrates adaptive transfer
learning and data fusion cores to tackle data
scarcity, and it embeds these technical
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components within a policy-aware structure to
ensure practical relevance and impact.

The remainder of this paper is organized as
follows: Section 2 presents a detailed
literature review, analyzing PB models, DD
models (statistical, ML, DL, ensemble), and
nascent hybrid approaches. Section 3
critically discusses persistent challenges,
including data issues, model generalizability,
and regional disparities. Section 4 introduces
the proposed IHM-TLF, detailing its core
components, architecture, and operational
workflows. Section 5 outlines a validation
pathway and discusses the framework's
implications for research, practice, and policy.
Finally, Section 6 concludes with a summary
of key findings and future research directions.

2. Literature Review
2.1. Physics-Based (White-Box) Modeling

PB modeling relies on fundamental physical
laws to describe the energy dynamics of a
building and its systems. This approach is
embodied in  whole-building  energy
simulation (BES) tools.

2.1.1. Simulation Tools and Methods
Prominent BES engines include EnergyPlus
(U.S. Department of Energy), TRNSYS
(Transient System Simulation Tool), and IDA
ICE (EQUA). These tools solve intricate sets
of differential equations governing heat
transfer (conduction, convection, radiation),
air flow, and HVAC system performance on
sub-hourly timesteps (Crawley et al., 2001).
Their strength lies in their ability to model
hypothetical scenarios, such as new building
designs or deep retrofit packages, where
historical data does not exist. They are
indispensable for code compliance, design-
phase optimization, and understanding the
sensitivity of energy use to specific
parameters (e.g., insulation level, window
glazing) (Lam, 2020).

2.1.2. Strengths and Limitations
The primary strength of PB models is their
interpretability and physical consistency.

Results are traceable to input parameters,
fostering trust among engineers and allowing
for causal analysis. They are also
extrapolation-robust; a well-calibrated model
can make reliable predictions under
conditions not present in the training data
(e.g., extreme weather events).

However, critical limitations hinder their
widespread operational use. They suffer from
the "performance gap,” where simulated
energy use deviates from actual measured
consumption, often due to uncertain input
parameters (e.g., occupant behavior, actual
equipment efficiency) and simplification
errors (Coakley et al, 2014). The
computational cost of detailed simulations
can be prohibitive for real-time control or
optimization loops requiring thousands of
evaluations. Most critically, they are data-
intensive to configure, requiring a vast array
of inputs that are often unavailable for
existing buildings, making large-scale stock
modeling challenging (Pan et al., 2023).

2.2. Data-Driven (Black-Box) Modeling

DD models bypass physical principles,
instead learning mapping functions between
input features (e.g., weather, time, occupancy
signals) and output energy consumption from
historical data.

2.2.1. Statistical and Classical Machine
Learning Models

Early DD approaches employed statistical
models. Linear and multivariate regression
provide simple benchmarks but often fail to
capture non-linearities (Chung & Yeung,
2017). Time-series models like ARIMA and
SARIMA are effective for capturing temporal
autocorrelation in stationary data (Box et al.,
2015). Classical ML techniques marked a
significant advancement. Support Vector
Regression (SVR) demonstrated robust
performance, particularly for short-term load
forecasting (STLF) with limited data (Chen et
al., 2017). Artificial Neural Networks (ANN),
especially multilayer perceptrons (MLP),
became  popular for their universal
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approximation  capabilities,  successfully
applied to forecasting loads at various time
scales (Karatasou et al., 2006). Tree-based
ensembles, namely Random Forests (RF) and
Gradient Boosting Machines (e.g., XGBoost),
gained prominence for handling
heterogeneous data types, automatic feature
importance ranking, and generally high
predictive accuracy (Wang et al., 2018).

2.2.2. Deep Learning and Ensemble Models
The advent of accessible computational power
and large datasets propelled deep learning
(DL) to the forefront. Recurrent Neural
Networks (RNN), and specifically their
variant Long Short-Term Memory (LSTM)
networks, are explicitly designed to model
long-term dependencies in sequential data,
making them exceptionally suitable for load
forecasting (Rahman et al., 2018).
Convolutional Neural Networks (CNN),
applied to 1D sequences or transformed 2D
representations of time-series data, excel at
extracting local temporal patterns (Sadaei et
al., 2019). Transformers, with self-attention
mechanisms, are emerging for capturing
complex, long-range dependencies but require
vast datasets (Vaswani et al., 2017).

Ensemble methods, which combine
predictions from multiple base models (e.g.,
via bagging, boosting, or stacking), are
consistently shown to enhance accuracy and
robustness by reducing variance and bias
(Wang et al., 2018). Hybrid ensemble-DL
models represent the current cutting edge in
pure DD forecasting.

2.2.3. Strengths and Limitations

DD models shine in predictive accuracy when
ample, high-quality data is available. They are
typically fast to execute once trained, enabling
real-time applications. Furthermore, they can
seamlessly integrate diverse data streams
from the Internet of Things (IoT), including
non-traditional data like Wi-Fi connection
counts or footfall sensors (Fotopoulou et al.,
2017).

Their weaknesses are the inverse of PB
strengths. They are largely uninterpretable;
understanding whiy a model made a specific
prediction is difficult, hindering trust and
troubleshooting. They are prone to overfitting
on noisy or limited data and are generally
poor at extrapolation beyond the range of
their training data. Their most significant
constraint is data hunger: performance
degrades sharply with insufficient or poor-
quality data, a common scenario for new
buildings or in regions with limited metering
infrastructure.

2.3. Hybrid (Gray-Box) Modeling: The
Convergent Path

Recognizing the complementary nature of PB
and DD paradigms, the field has gradually
shifted towards hybrid, or gray-box, modeling.
These approaches seek a pragmatic middle
ground.

2.3.1. Current Hybrid Strategies

1. Sequential Calibration: A PB model
is first run, and a DD model (often a
simpler regression or MLP) is trained
to predict the residual error between
the simulation and actual
measurements. The final prediction is
the simulation output plus the learned
correction (Heo et al., 2012).

2. Surrogate Modeling: A DD model is
trained to emulate the input-output
relationship of a high-fidelity PB
simulation. This fast-running
"surrogate" or "meta-model" can then
be used in place of the slow simulation
for tasks like design optimization or
uncertainty  quantification, where
thousands of evaluations are needed
(Rastogi et al., 2017).

3. Physics-Informed Machine
Learning (PIML): This is a more
profound integration. Physical laws
(e.g., conservation of energy) are
embedded into the ML model's loss
function or architecture as soft
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constraints. Physics-Informed Neural
Networks (PINNs) are a prominent
example, guiding the model towards
physically plausible solutions even
with sparse data (Raissi et al., 2019).

2.3.2. Addressing Data Scarcity: Transfer
Learning and Data Fusion

A pivotal challenge for DD and hybrid
models in practice is data scarcity. Two key
strategies have emerged:

e Transfer Learning (TL): A model
pre-trained on a source building or
region with abundant data is fine-
tuned using a small dataset from a
target building. This leverages learned
general patterns (e.g., daily or weekly
load shapes) to accelerate and improve
learning on the new task (Weiss et al.,
2016). Studies show TL can reduce
prediction error by 11-20% compared
to training from scratch on limited

target data (Fang et al, 202I;
Chaudhary et al., 2025).
e Data  Fusion: This involves

intelligently combining multi-source,
heterogeneous data (sensor readings,
weather forecasts, building
management system logs, categorical
building attributes) to create a richer,
more informative feature set for
modeling (Himeur et al., 2023).

2.4. Critical Research Gaps

Despite these advances, our review identifies
persistent gaps:

1. Lack of a Unified Framework:
Existing hybrid studies are often ad-
hoc, combining specific models for a
specific  case. A generalized,
architectural framework for selecting
and coupling PB and DD components
based on project goals, data
availability, and building type is
absent.

2. Neglect of Underserved Regions:
The modeling literature

disproportionately reflects contexts in
the Global North. The unique
challenges of regions like Africa—
characterized by data poverty, distinct
building typologies, different HVAC
practices, and resource constraints—
are rarely addressed, leading to a lack
of transferable, context-sensitive
solutions (Agradi et al., 2022).

3. Disconnect from Policy and
Implementation: Many sophisticated
models remain academic exercises. A
clear pathway to translate model
outputs into  actionable  energy
conservation  measures (ECMs),
retrofit investment decisions, and
policy instruments like building
performance standards is frequently
missing.

The proposed IHM-TLF, detailed in the next
section, is designed to address these exact

gaps.
3. Persistent Challenges and Barriers

Before introducing the framework, it is
essential to crystallize the core challenges it
must overcome.

3.1. The Data Trilemma: Scarcity, Quality,
and Heterogeneity

The foundational barrier remains data. For
many existing buildings, especially outside
regulated  markets,  historical  energy
consumption data is sparse, non-existent, or
inconsistently formatted. Sensor data is often
noisy, contains gaps from transmission
failures, and may lack crucial contextual
metadata (Liu et al., 2023). Furthermore, data
from different systems (electrical meters, gas
meters, BMS, weather stations) operate at
different temporal and spatial granularities,
making fusion non-trivial.

3.2. The Generalizability Problem

Models trained on data from office buildings
in temperate climates may fail spectacularly
when applied to a hospital in a tropical region.
This lack of generalizability across building
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types, usage patterns, and climatic zones is a
major impediment to scalable solutions. It
underscores the need for adaptive techniques
like transfer learning and the inclusion of
robust, context-descriptive features.

3.3. Interpretability vs. Performance
Trade-off

There is an inherent tension between model
complexity (and thus potential accuracy) and
interpretability. While a deep neural network
may achieve the lowest forecast error, its
"black-box" nature makes it difficult for
facility managers to trust or for engineers to
diagnose faults. Simpler, more interpretable
models are often preferred in operational
settings, even at the cost of some accuracy.

34. Integration into Real-World
Workflows

The ultimate test of any model is its
integration into decision-making processes.
Barriers here include the cost and expertise
required for model deployment and
maintenance, alignment with existing BEMS

protocols, and the ability to clearly

communicate results (e.g., energy savings

estimates, fault alerts) to non-expert
stakeholders like building owners and
financiers.

4. The Integrated Hybrid Modeling and
Transfer Learning Framework (IHM-TLF)

To bridge the gaps identified, we propose the
IHM-TLF—a modular, flexible architecture
for developing and deploying energy
performance models for non-domestic
buildings. The framework is visualized in
Figure 1 and consists of four interconnected
layers.

Figure 1: Schematic of the Proposed
Integrated Hybrid Modeling and Transfer
Learning Framework (IHM-TLF). The
diagram shows a four-layer architecture: Data
& Context Layer, Core Modeling Layer (with
Hybrid Coupling Engine and Transfer
Learning Core), Application & Service Layer,
and Policy & Stakeholder Interface Layer.
Arrows indicate the flow of data, model
outputs, and decisions.

Integrated Hybrid Modeling and Transfer Learning Framework (IHM-TLF)

Proprocesang & Fusion
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4.1. Layer 1: Data & Context Layer

This layer is responsible for ingesting and
harmonizing all relevant data. It includes
modules for:

e Data Acquisition: Connectors to [oT
sensors, smart meters, BMS, weather

APIs, and static databases (e.g.,
building material properties, floor
area).

e Preprocessing & Fusion: Robust

pipelines for handling missing data
(via advanced imputation), anomaly
detection, normalization, and temporal

alignment of heterogeneous data
streams.
o Contextual Feature Bank: A

structured repository that not only
stores raw data but also engineered
features critical for generalization (e.g.,
building  vintage, climate zone
classification, primary activity type,
number of occupants). This bank is
crucial for enabling effective transfer
learning.

4.2. Layer 2: Core Modeling Layer
The heart of the IHM-TLF, this layer contains
two central engines.

4.2.1. Hybrid Coupling Engine

This engine provides three distinct, structured
pathways for combining PB and DD models,
moving beyond ad-hoc hybridization.

1. Pathway A (Calibration-Focused):
Employs the Sequential Calibration
pattern. A configured PB model (e.g.,
a simplified RC-network model or a
pre-configured EnergyPlus template)
generates baseline predictions. A
light-weight DD model (e.g., Gradient
Boosting) is then dedicated to learning
the systematic error (residual) between
the physics-based simulation and
observed data. This is ideal for
scenarios where a reasonable PB
model can be constructed but precise
calibration is needed.

2. Pathway B (Optimization-Focused):
Employs the  Surrogate-Assisted
pattern. For tasks requiring vast
parameter exploration (e.g., finding
the optimal setpoint schedule or
retrofit package combination), a high-
fidelity PB simulation is run for a
designed sample of scenarios. A
powerful DD model (e.g., a deep
neural network) is trained as a
surrogate on this input-output data.
The fast surrogate is then coupled with
an optimization algorithm (e.g.,
genetic algorithm) to rapidly identify
optimal solutions.

3. Pathway C (Generalization-
Focused): Employs the Physics-
Informed  Learning pattern. For
applications where data is very limited
but physical knowledge is strong, a
PINN or a kernel-based model with
physics-based constraints is
constructed. The DD  model's
architecture or training regimen is
explicitly  designed to  respect
governing equations, ensuring
predictions are physically plausible.

4.2.2. Adaptive Transfer Learning Core

This component is transversal, supporting all
pathways in the Hybrid Coupling Engine. It
manages a repository of pre-trained models
(both DD and simplified PB) from the
Contextual Feature Bank. When a new target
building is introduced, the core:

a) Identifies the most similar source models
based on contextual features (climate,
building type, size).

b) Selects an appropriate transfer strategy:
feature-based  transfer  (using learned
representations), parameter-based  transfer
(fine-tuning model weights), or instance-
based transfer (weighting relevant source
data).

c) Executes the transfer and fine-tuning
process, drastically reducing the target data
required for accurate modeling.
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4.3. Layer 3: Application & Service Layer
This layer translates model outputs into
actionable services.

e Forecasting Service: Provides short-
term (hourly/day-ahead) and long-
term (monthly/annual) load forecasts
for operational planning and demand
response.

e Benchmarking &  Diagnostics:
Compares a building's energy use
intensity (EUI) against a peer group
generated by the model or identifies
deviations from expected baselines,
flagging potential faults or
inefficiencies.

e Retrofit Simulation & Planning:
Leverages the surrogate models (from
Pathway B) to simulate the energy and
financial impact of various ECMs,

generating prioritized retrofit packages.

e Optimal Control Adviser: Suggests
real-time or scheduled setpoint
adjustments for HVAC and lighting
systems to minimize energy use while
maintaining comfort, using predictions
from the model.

4.4. Layer 4: Policy & Stakeholder
Interface Layer
This layer ensures the framework's outputs

are accessible and relevant to decision-makers.

e Policy Module: Translates technical
outputs (e.g., "potential 25% savings
with insulation upgrade") into policy-
relevant metrics: carbon savings, peak
demand reduction, cost-benefit
analyses, and compliance with local
building codes or energy performance
certificates.

e Visualization & Reporting
Dashboard: Presents insights through
intuitive graphs, alerts, and reports
tailored to different users (facility
manager, sustainability officer,
financier).

e Implementation Roadmap

Generator: For retrofit scenarios,
produces a  step-by-step  guide
including estimated costs, savings,
payback periods, and recommended
contractors or technologies.

5. Validation Pathway and Discussion

5.1. Proposed Validation Pathway
The IHM-TLF requires rigorous, multi-stage

validation.
1. Component-Level Testing:
Individual modules (data

preprocessing, TL core, each hybrid
pathway) are tested on open
benchmarks (e.g., ASHRAE Great
Energy Predictor III dataset, Building
Data Genome Project 2).

Framework-Level Case Studies: The
full framework is applied to diverse
case studies:

o Case A (Data-Rich, Developed
Region): A university campus
in Europe, testing optimization
(Pathway B) for HVAC control.

o Case B (Data-Scarce,
Developing Region): A
hospital in Sub-Saharan Africa,
testing  the  TL-enhanced
calibration pathway (Pathway
A + TL Core) to establish a
baseline and identify low-cost
ECMs.

o Case C (New Building Design):
A commercial building in
design phase, using the
surrogate pathway (Pathway B)
to optimize facade and system
selection.

Comparative Metrics: Performance
will be evaluated against pure PB and
pure DD baselines using standard
metrics (CV-RMSE, MAE, NMBE) as
well as novel metrics for stability,
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generalizability cost, and

interpretability.
5.2. Discussion of Implications

5.2.1. For Research

The IHM-TLF provides a standardized
experimental platform, encouraging
systematic comparison of hybrid strategies. It
directs research attention towards
understudied  areas,  particularly  the
development of robust TL methods for cross-
climate/cross-typology applications and the
creation of lightweight, interpretable gray-box
models suitable for edge computing in BEMS.

5.2.2. For Industry and Practice

The framework lowers the barrier to entry for
advanced modeling. By providing structured
pathways and automating complex tasks like
model selection and TL, it empowers
consultants and energy managers. Its explicit
link to retrofit planning and financial metrics
can build a stronger business case for energy
efficiency investments.

5.2.3. For Policy and Global Sustainability

By generating reliable, building-specific data
on energy savings potential, the IHM-TLF
can inform more effective and equitable
building codes, incentive programs, and
carbon reduction targets. Its focus on
transferability is crucial for supporting the
global South in leapfrogging to efficient
building stocks, contributing directly to UN
Sustainable Development Goals (SDG 7:
Affordable and Clean Energy; SDG 11:
Sustainable Cities; SDG 13: Climate Action).

6. Conclusion

This paper has presented a comprehensive
review of energy performance modeling for
non-domestic  buildings, highlighting the
complementary strengths and weaknesses of
physics-based and data-driven paradigms. The
convergence toward hybrid modeling is clear,
yet efforts remain fragmented and lack a
cohesive structure, particularly for addressing
global challenges like data scarcity and
regional inequity.

In response, we proposed the Integrated
Hybrid Modeling and Transfer Learning
Framework (IHM-TLF). This framework is a
significant step beyond the current state-of-
the-art by: (1) providing a clear architectural
blueprint with distinct, purpose-built hybrid
coupling pathways; (2) centralizing adaptive
transfer learning and data fusion as core
capabilities to overcome the data barrier; and
(3) explicitly embedding the technical
modeling process within a policy-aware and
stakeholder-relevant workflow.

The IHM-TLF is not a single model but a
versatile ecosystem. Its value lies in its ability
to guide the development of context-
appropriate, robust, and actionable energy
models—from a data-scarce hospital in
Malawi to a high-tech office tower in
Singapore. Future work will focus on the
computational  implementation of  the
framework as an open-source toolkit and its
rigorous validation through the proposed
international case studies. By bridging the gap
between sophisticated energy science and on-
the-ground implementation needs,
frameworks like the IHM-TLF are essential
for accelerating the transition to a sustainable,
resilient, and equitable built environment.
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