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Abstract: Partial differential equations (PDEs) play a vital role in modeling diverse physical and
engineering processes, such as heat conduction and diffusion. However, obtaining analytical
solutions is often difficult or impossible, which motivates the development of efficient numerical
techniques. This paper presents a novel bivariate Chebyshev integral collocation method
(BCICM) for solving the one-dimensional heat equation on the domain [0, 1] X [0, 1] with initial
and Dirichlet boundary conditions. In the proposed method, the second-order spatial derivative in
the governing PDE is approximated using a truncated bivariate shifted Chebyshev series of the
first kind. By performing twofold integration, the approximate solution is reassembled while
arbitrary integration functions are determined through boundary conditions. The time derivative
is then evaluated analytically and substituted back into the heat equation, yielding an algebraic
system for the unknown Chebyshev coefficients. Chebyshev-Gauss (CG) nodes in space and
Chebyshev—Gauss—Lobatto (CGL) nodes in time are selected as collocation points to ensure the
initial condition is imposed at t = 0. The entire procedure is implemented using MATLAB to
efficiently compute the Chebyshev coefficients and approximate solutions. Three Numerical
examples are presented to demonstrate the efficiency, rapid convergence, and accuracy of the
proposed method.

Keywords: Bivariate Chebyshev polynomials; Heat equation; Integral collocation; Chebyshev—
Gauss—Lobatto nodes;

1.0 Introduction feasible. To address these limitations, a
variety  of  numerical  approximation
techniques have been developed to produce

approximate solutions with error control.

Partial differential equations (PDEs) are
powerful mathematical tools used to model a
wide range of dynamical systems in science,
engineering, physics, biology, and economics.
Solving a PDE involves determining an

Among various numerical approaches,
polynomial approximation methods are

unknown function that satisfies the governing
equation along with prescribed initial and/or
boundary conditions.

Classical analytical techniques provide exact
solutions for some special classes of PDEs;
however, they are often restricted to simple
geometries, constant coefficients, and specific
boundary conditions. In many practical
problems, obtaining analytical solutions is not

particularly appealing due to their smoothness,
continuous differentiability, and ease of
implementation with modern computational
tools. By the Weierstrass Approximation
Theorem, any continuous real-valued function
defined on a closed interval can be
approximated arbitrarily well by a polynomial.

Several families of orthogonal polynomials
have been employed for numerical
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approximation, including Taylor, Legendre,
Gegenbauer, Hermite, and Chebyshev
polynomials. Among them, Chebyshev
polynomials are especially advantageous due
to their minimax property, which minimizes
the maximum approximation error. This
makes them particularly effective for
developing stable and highly accurate
numerical schemes for differential equations.

Over the past decades, polynomial-based
methods have been extensively applied to
ordinary differential equations (ODES) due to
their accuracy and computational efficiency.
Clenshaw (1957) introduced a Chebyshev
series approach for linear differential
equations, providing a systematic technique to
compute the coefficients in the series. Later,
Sezer and Kaynak (1996) developed the
Chebyshev—matrix method, offering a matrix-
based approach to obtain approximate
polynomial solutions of linear differential
equations. Akytz and Sezer (2003) extended
these ideas to systems of higher-order ODESs
with variable coefficients, demonstrating the
applicability of Chebyshev methods to more
complex systems. These studies confirm that
Chebyshev-based  methods are  well-
established, accurate, and computationally
efficient for a wide range of ODEs.

The application of Chebyshev techniques to
partial differential equations (PDEs) has been
comparatively less explored, particularly for
multidimensional and nonlinear problems.
Gumgum, Kurul, and Baykus Savasaneril
(2018) applied Chebyshev collocation to the
two-dimensional  heat equation,  while
Karunakar ~ and  Chakraverty  (2019)
demonstrated the effectiveness of shifted
Chebyshev polynomials PDEs. Lui and Nataj
(2020) introduced a space-time Chebyshev
spectral  collocation scheme, improving

accuracy in both spatial and temporal domains.

More recently, Ghimire, Tian, and
Lamichhane (2016), Lovetskiy, Sergeev,
Kulyabov, and Sevastianov (2024), and Shior
et al. (2024) applied Chebyshev-based
methods to linear and nonlinear PDEs in
engineering contexts. Despite these advances,

the use of Chebyshev collocation for PDEs
with diverse boundary and initial conditions
remains less explored.

Motivated by this gap, the present work aims
to develop an efficient Bivariate Chebyshev
Integral Collocation Method (BCICM) that
extends  the  conventional  univariate
framework to a bivariate integral collocation
approach. The method provides a semi-
analytical approximate solution for the one-
dimensional heat equation with Dirichlet
boundary and initial conditions.

2.0 Notations and Theory

2.1 Bivariate Chebyshev Polynomials

The univariate Chebyshev polynomial of the
first kind of degree n, denoted by T, (x), is
defined on the interval [—1, 1] as:

T,,(x) = cos(nf), x=cosf, 0<6 <,
n=20,12,...

The corresponding bivariate Chebyshev
polynomial of the same kind of degrees m
and n over the domain [—1,1] x [—1,1] is
defined as the product of two univariate
Chebyshev polynomials:

Ton (2, y) = Ty ()T, (y), mn=0,1,2,....

2.2 Recurrence Relation

The univariate Chebyshev polynomials satisfy
the recurrence relation

Thi1(x) = 2xT(x) — T (x),

with initial conditions Ty(x) = 1 and T; (x) =
X.

n=1,

Similarly,  the  bivariate

polynomials satisfy:

Chebyshev

T(m+1)n(x' y) = 2xTn(x,y) — T(m—l)n(x' y),

Tm(n+1)(x' y) = 2yTn(x,y) — Tm(n—l) (x, y).

2]

Available Online: https://academianspublishers.org/international-journal-of-advances-in-engineering-and-computer-science /



2025; 1-2| 01-14

2. 3 Nodes of Chebyshev Polynomials

The nodes of Chebyshev polynomials, often
referred to as zeros of Chebyshev polynomials,
are widely used as collocation points in
polynomial interpolation due to their excellent
numerical properties.

The univariate Chebyshev  polynomial
T,(x), for n>1 has n simple, real zeros
within the interval (—1, 1) and they are given

by

2j +1
x]-=cos< on n),
This set of points is also known as the
Chebyshev-Gauss (CG) nodes. A key
characteristic of these nodes is that they are
strictly interior points; the endpoints of the
domain (x =+1) are never included.
Consequently, while ideal for many
interpolations, CG nodes are less suitable for
problems requiring the direct enforcement of
boundary conditions at the endpoints of
domain.

j=01,..,(n—1).

For problems where conditions must be
imposed at the boundaries, the Chebyshev-
Gauss-Lobatto (CGL) nodes are the preferred
choice. These points are defined as the
extrema of T,,(x) on [—1, 1]and are given by:
jm :
xj=cos<;), j=20,1,--,n

Unlike the CG nodes, the CGL set explicitly
includes the endpoints (j=0=>x=1, j =
n = x = —1) making it a natural grid for
collocation methods in boundary value
problems.

The bivariate CG nodes of T,,,(x,y) are
obtained as the tensor product of these
univariate nodes in x- and y- directions:

20+ 1 2j+1
(xl-,yj) = <cos > T, COS o T[),

i=01.,m-1, j=01,..,(n—1).

2.4 Chebyshev Polynomials on Generic
Domain and Shifted Chebyshev Polynomials

The natural domain of the univariate
Chebyshev polynomials is [—1, 1]. However,
they can be mapped to any interval [a, b]

using the linear transformation:
x—= (a+b)
= 2
S (b —a)

In particular, when the interval is [0, 1], the
resulting polynomials are known as shifted
Chebyshev Polynomials, denoted by T, (x)
and are defined as

T, (x) = T,,(2x — 1).

This concept extends naturally to the bivariate
case. Mapping from [-1,1] x[-1,1]to a
general domain [a, b] X [c, d] is achieved via

x—%(a+b)

y—>(c+d)
HURED |

;=)

X = y =

The shifted bivariate Chebyshev polynomials
are then defined as:

Tmn*(x' y) = Tm*(x)Tn*(Y):
mn=20,1,2,...
2.5 Approximation of Functions Using
Bivariate Chebyshev Polynomials

Any sufficiently smooth function f(x,y)
defined on a rectangular domain [—1,1] X
[—1, 1] can be approximated using a truncated
bivariate Chebyshev series:

M N
FE) = D) amnTnn ()

m=0n=0

: i iamnTm(x)Tn(t).

m=0n=0

where a,,, are the Chebyshev coefficients to
be determined.

3]
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Using the orthogonality property of the In practice, the integrals are often
Chebyshev polynomials with respect to the  approximated wusing discrete orthogonal

weight function w(x,y) = #1—3/2 the  projection at the CG nodes as follows:

coefficients can be computed via continuous M-1N-1

orthogonal projection: o~ Imln
mn
MN

£ 0 Y) Ton (%1, 1),
i=0 j=0
dy,  where (x,%), i=01,.,(M-1), j=
0,1,...,(N — 1), are bivariate CG nodes, and
a; is defined as above.

Amn =

1 1
U Ay f f Ton (%, ) f (X, ) dx
n? ) ) NT=x%1—y?

where the scaling factors are defined as

1, k=0,
(lkz{

2, k=1

3.0 Methodology

(i). Problem Definition
We consider the one-dimensional heat conduction equation
U = QUyy, 0<x<1, t>0,
subject to the initial and Dirichlet boundary conditions )
ulx,0) =uo(x),  u(0,t) =yo(0),  u(l,e) =y.(t),

where a > 0 is the thermal diffusivity constant.

(if).Approximation of wu,, using Bivariate Shifted Chebyshev Expansion

The second-order spatial derivative u,, (x,t) is approximated by a finite double series
expansion in shifted bivariate Chebyshev polynomials over

M N M N
Uy (x,8) = z Z A T (2, 1) = z z Ay T (X) T (2), (2)

m=0n=0 m=0n=0

where a,,, are unknown coefficients to be determined and T, (x) denotes the shifted
Chebyshev polynomial of degree k defined on the interval [0, 1].

(iii). Integration with Respect to x

Integrating equation (2) twice with respect to x gives an approximation for u(x, t):

M N
U~ ) D am RO +xg(0) + h(D), ®

m=0n=0

where T;;(x) denotes the twice-integrated form of T, (x), and g(t), h(t) are arbitrary
functions of t arising from integration constants.

41
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(iv). Enforcement of Dirichlet Boundary Conditions
Applying the boundary conditions u(0,t) = y,(¢) and u(1,t) = y,(t) to equation (3):
Evaluate (3) at x = 0:
M N
w(0,0 =700 = D" amiTR(OT(©) +h(®),
n=0

m=0

yielding
M N
h(®) = 7o) = D" ) amnTR(OT(O).

m=0n=0

(4)
Evaluate (3) at x = 1:

M N
w(1LY) =1® = D Y anTR(DTO + g(6) + h(D).

m=0n=0

M N
= 9® =1® = ) > DT - k.

m=0n=0

Eliminating h(t) using equation (4), we obtain

IO =1O 1O = ) ) amn(Tr D) = RO, 5

m=0n=0

Now substituting g(t) and h(t) using equations (4) and (5) gives

U0~ Y D T +271(0) + (1= )1o(0)

m=0n=0

(6)

where
Y (x) = [T (x) — xT;,(1) — (1 = )T;;,(0)].

(v). Computation of u;
Differentiating equation (6) partially with respect to t, we obtain:

U = ) D AP COT (O +x72"(0) + (1= 00 (©). ™

m=0n=0

(vi). Substitution into the Heat Equation
Substituting equations (2) and (7) into the governing PDE (1) gives:

M N
D) @l @ ©) = aTnOTO] = = Dyo' () — 20" @), ®
m=0n=0
(vii). Collocation Strategy
5
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From equation (6), there are a total of
(M + 1)(N + 1) unknown coefficients
a,,, to be determined in order to
construct the approximate solution
u(x, t). However, it is important to note
that the initial condition has not yet been
incorporated into the formulation. To
address this, appropriate collocation
strategy is introduced as follows.

Since the boundary conditions have
already been employed to eliminate the
arbitrary functions g(t) and h(t) arising
from the twofold integration of the
double Chebyshev expansion of u,.,, it is
desirable to use pure shifted CG nodes of
Ty+1 as collocation points for spatial
variable x. These nodes are defined by

N YORRNACIEED
e\ TSz )
=01, M.

These (M + 1) nodes lie strictly within
the open interval (0,1), thereby
excluding the endpoints x =0andx = 1

To incorporate the initial condition into
the collocation framework, the shifted
Chebyshev—-Gauss—Lobatto (CGL) nodes
are adopted for the temporal variable ¢,
given by

t*—T(l (jn>) i =0,1,--,N
1_2 COSN ;]_ ] ) )

Where T denotes the upper bound of the
temporal domain. For simplicity, we set
T = 1, allowing the direct use of shifted
CGL nodes within the interval [0,1] .
These (N + 1) nodes include both
endpoints of the interval, ensuring that
t =0 (corresponding to j=0 ) is
explicitly present. Hence, the initial
condition is naturally incorporated into
the collocation process, while
maintaining high accuracy near the
boundaries due to the clustering property
of the CGL nodes.

The collocation points (x;, t; = 0) for
i=0,1,---,M are substituted into
equation (6) to incorporate the initial
condition. This yields (M + 1) equations
involving the unknown coefficients a,,,

that are already accounted for through the (i=0,1,-,M;j=1,2-,N) as
imposed boundary conditions. This follows:
choice effectively avoids redundancy in
the system of equations.
M N
D) ¥ GDT(0) = () = x{73(0) = (1 = 5Dy (O) @

m=0n=0

Similarly, the collocation points
(x;, t) for i=0,1,--,M and j=
1,2,---, N are applied to equation (8) to
enforce  the  governing  partial
differential equation.

This results in N(M + 1) additional
equations for the remaining unknown
coefficients a,,, (i =0,1,--,M; j=
1,2,-,N):

M N
DD mn [P DT (&) = aTa GDT ()] = =27, (6) = (1= %), (8): (10)

m=0n=0

Combining equations (9) and (10), we
obtain a total of (M + 1)(N + 1) linear
algebraic equations for the (M +

1)(N + 1) unknown coefficients a,,,, .
This system can be written compactly
in matrix form as:

6
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[0 s X [@mnlpxa = [BY] ., (11)

where P = (M + 1)(N + 1), a,,,,, are unknown coefficients to be determined and the matrix

entries are defined as:

N W (x) T (0),
i
(pﬂ]ln - * *! * * * * *
me(xi)Tn (tj) - aTm(xi)Tn (tj ),
and
- uo (%) — x;71(0) — (1 — x;)y,(0),
by =

_x;h’(t;) -(1- xi*))’o'(tj*),

Solving the linear system (11) provides all
unknown coefficients a,,,, which are then
substituted back into equation (6) to
reconstruct the approximate solution

u_approx over the spatial-temporal domain.

Since our procedure begins by expanding
the second derivative of the unknown
function u(x, t) with respect to the spatial
variable x in terms of truncated bivariate
Chebyshev polynomials up to degree M and
N in x and t, respectively, and the unknown
function is subsequently recovered through a
two-fold integration,  the  resulting
approximate polynomial solution attains a
maximum degree of (M + 2) in x, while the
temporal variable t remains bounded by a
maximum degree of N.

4.0 Results and Discussion

To validate the effectiveness of the proposed
BCICM, three one-dimensional heat
conduction equations are investigated. These
examples include cases with homogeneous
and non-homogeneous Dirichlet boundary
conditions and involve both polynomial and
non-polynomial  exact solutions. The
numerical approximations are compared
against analytical solutions, and
convergence behavior is analyzed in terms

i=0,1,,M;j=0,

i = 0111'”1M; ] = 1'27"';N;

i=0,1,,Mj=0,

i=0,1-,M;j=12-N.

of the spatial and temporal polynomial
degrees M and N.

Example 1: Homogeneous Boundary
Conditions with an Infinite Series Exact
Solution

We consider

U = Uyy, 0<x<1, t>0,

subject to homogeneous Dirichlet boundary
conditions

u(0,t) =0, u(1,t) =0, t>0,

and the initial temperature distribution

u(x,0) = x(1 —x), 0<x<1.

The exact analytical solution is represented
by the Fourier sine series:

0]

4 2.2
u(x, t) = z = [1 - (—=1D)"]sin(nmx)e ™™t

n=1

Using the proposed BCICM, the MATLAB-
generated approximate solution u_approx
for Example 1 with M =2 and N =2 is
obtained as follows:

7]
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u_approx = -0.41591*t"2*x" +
0.83183*t"2*x"3 - 1.994*t"2*x 2 +
1.5781*t"2*x + 0.38251*t*x"4 -
0.76503*t*x"3 + 2.9975*t*x" 2 -
2.615*%t*x -2.3709e-16*x"4 + 3.367e-
16*x73 - 1.0*x"2 + 1.0*x

It is evident from this polynomial
representation that the highest degree in x is

Exact Solution (n = 30)

u(x,t)

()

Approximate Solution (M=2, N=4)

(©)

u(x,t)

4 (i.e., M + 2) and the highest degree in t is
2 (i.e.,, N). This observation is in perfect
agreement with the theoretical expectation:

Since the exact solution is expressed as an
infinite series, we truncate the series at n =
30 and treat this truncated form as the exact
solution for the purpose of comparison with
the approximate solution.

Approximate Solution (M=2, N=2)

()

Approximate Solution (M=5, N=7)

0.25

(d)

Figure 01: (a) Exact analytical solution and (b)-(d) BCICM approximate solutions with increasing polynomial
degrees (M, N) for Example 1.

Above, Figure 01(a) displays the exact
analytical solution of Example 1, while
Figures 01(b)—(d) present the numerical
approximations obtained using the proposed
BCICM for different combinations of
polynomial degrees (M, N). As the values of

M and N increase, the approximate solutions
exhibit noticeable improvements in spatial—
temporal accuracy and closely follow the
behavior of the exact solution. These visual
results clearly demonstrate the convergence
characteristics of the proposed method.
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M, N Maximum Absolute Error
M=2, N=2 9.89906e-02
M=1, N=3 2.32573e-02
M=2, N=4 8.96684e-03
M=4, N=6 1.65589¢-03
M=5,N=7 3.03599¢-04
M=7, N=5 2.39561e-03
M=5, N=8 4.76440e-04
M=8, N=10 1.65164e-04

Table 01: Maximum absolute error for Example 1
under different (M, N) combinations, evaluated on a
uniform spatial-temporal grid with a step size of 0.2.

Table 01 presents the maximum absolute
errors computed on a uniform spatial-
temporal grid with step size 0.2 for various

polynomial degree combinations (M,N) .
The results demonstrate a systematic
reduction in error as the polynomial degrees
increase, with the maximum error
decreasing from 9.89906x102 for (M, N) =
(2,2) to 1.65164x10* for (M, N) = (8, 10).
This consistent error reduction confirms the
spectral convergence properties of the
proposed BCICM. The observed non-
monotonic  behavior in select cases,
particularly ~ the  comparison  between
(M =7, N=25) with error 2.39561x103
and (M=5 N=7) with error
3.03599x10* reveals an important interplay
between spatial and temporal resolution
requirements, suggesting that optimal
accuracy depends on balanced refinement in
both dimensions rather than maximizing
either parameter independently.

x=0.0 x=0.2 x=0.4 x=0.6 x=0.8 x=1.0
t = 0.0 | 0.00000e+00 1.00820e-06 6.26720e-07 6.26720e-07 1.00820e-06 3.92010e-17
t = 0.2 | 0.00000e+00 1.65160e-04 9.46420e-05 9.46420e-05 1.65160e-04 4.38920e-18
t = 0.4 | 0.00000e+00 1.59480e-04 1.09840e-04 1.09840e-04 1.59480e-04 6.09710e-19
t =0.6 | 0.00000e+00 1.39760e-04 9.04460e-05 9.04460e-05 1.39760e-04 8.46960e-20
t = 0.8 | 0.00000e+00 1.55560e-05 6.54210e-06 6.54210e-06 1.55560e-05 1.17650e-20
t =1.0 | 0.00000e+00 | 7.36630e-06 4.93290e-06 4.93280e-06 7.36640e-06 1.63430e-21

Table 02: Point wise absolute error distribution for Example 1 corresponding to (M, N) = (8,10), evaluated
on a uniform spatial grid with step size 0.2 and time step 0.2.

Table 02 provides the point wise error
distribution on the same uniform grid of step
size 0.2 for the case (M, N) = (8,10). Due
to the exact enforcement of Dirichlet
boundary conditions, the numerical error at
the boundaries remains nearly zero. Across
the interior nodes, the error remains
extremely small at all-time levels,
demonstrating the reliability and robustness
of the method throughout the computational
domain.

Example 2: Non-Homogeneous Boundary
Conditions with Finite-Term Exact Solution

We next consider the following one-
dimensional heat equation:

U = 3Uyy, 0<x<l1, t>0,

subject to the boundary conditions

u(0,t) =0, u(l,t) =1, t>0,
and the initial condition
u(x,0) = x + sin(mx), 0<x<l1.

The exact solution of the above PDE is

u(x, t) = x + e 3t sin(mx).

9]
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The MATLAB generated approximate u_approx = -3.2052e-15*t"3*x"3 +
- . .596*tA3*x 2 - 16.596%t 3*x +
solution u_approxfor Example 2; computed 16.596
. -4PP p P 6.4772e-15%t"2*¥x"3 - 34.23*%t"2*x"2 +
via the proposed BCICM withM =1,N = 34.23%tA2%x - 3.8962e-15%t*XxA3 +
3, expressed as: 21.134%t*x"2 - 21.134*t*x + 6.2804e-

16*x*3 - 3.5521*x”2 + 4.5521*x

Exact Solution Approximate Solution (M=2, N=2)

u(x,t)

(a) (b)

Approximate Solution (M=2, N=4) Approximate Solution (M=5, N=7)

u(x,t)
u(x,t)

(c) (d)

Figure 02: (a) Exact analytical solution and (b)—(d) BCICM approximate solutions with increasing polynomial
degrees (M, N) for Example 2.

Figure 02 (b)-(d) shows that the M=4, N=6 5.97661e-02
approximate solutions for Example 2 M=5, N=7 1.41425e-02
increasingly resemble the exact solution M=7, N=5 8.80991e-02
depicted in Figure 02(a) as the polynomial M=5, N=8 1.15563e-02
degrees are increased. M=8, N=10 4.68940e-03
M N Maximum Absolute Error M=12, N=14 1.18728e-04
Miz' Niz 4';2;43&81 Table 03: Maximum absolute error for Example 2
M=1, N=3 1.32250e-01 under different (M, N) combinations, evaluated on a
M=2, N=4 9.12547e-02 uniform spatial-temporal grid with a step size of 0.2.

Page 10|
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Table 03 reports the maximum absolute
errors for Example 2 obtained using
different combinations of (M,N) . As
expected, the error decreases progressively
when the polynomial degrees in both the
spatial and temporal domains are increased,
confirming the convergence of the proposed
BCICM.

However, the reduction rate is slightly lower
compared to Example 1, which may be
attributed to the inhomogeneous nature of
the boundary conditions in this problem.

Furthermore, a distinct deviation in error can
be observed for the cases (M,N) = (5,7)
and (7,5). Although both settings involve
relatively high polynomial degrees, the

difference. This behavior can be explained
by the imbalance in spatial-temporal
resolution under the BCICM formulation.
Specifically, when M =7 and N =5, the
effective spatial degree becomes 9, while
the temporal degree remains 7, leading to a
resolution mismatch that negatively affects
the approximation accuracy. Conversely,
(M,N) = (5,7)maintains a more balanced
resolution between the spatial and temporal
domains, yielding a lower error.

These findings highlight that selecting
polynomial degrees that maintain a balanced
approximation degree in both dimensions
leads to better accuracy, further supporting
the observations made in Example 1.

resulting errors exhibit a noticeable
x=0.0 x=0.2 x=0.4 x=0.6 x=0.8 x=1.0
t=0.0 | 0.00000e+00 | 4.88500e-15 | 1.11020e-15 | 8.88180e-16 | 5.32910e-15 | 1.55430e-15
t=0.2 | 0.00000e+00 | 7.33780e-05 | 1.18730e-04 | 1.18730e-04 | 7.33780e-05 | 8.85960e-14
t=0.4 | 0.00000e+00 | 4.97290e-05 | 8.04640e-05 | 8.04640e-05 | 4.97290e-05 | 6.43060e-12
t=0.6 | 0.00000e+00 | 6.56370e-05 | 1.06200e-04 | 1.06200e-04 | 6.56370e-05 | 5.01890e-11
t=0.8 | 0.00000e+00 | 4.02350e-05 | 6.51020e-05 | 6.51020e-05 | 4.02350e-05 | 4.11780e-10
t=1.0 | 0.00000e+00 | 1.25890e-06 | 2.03700e-06 | 2.03710e-06 | 1.25920e-06 | 4.02660e-10

Table 04: Point wise absolute error distribution for Example 2 corresponding to (M, N) = (12,14), evaluated
on a uniform spatial grid with step size 0.2 and time step 0.2.

Table 04 displays the point wise absolute
error distribution for Example 2 using
BCICM with polynomial degrees (M,N) =
(12,14) evaluated on a uniform spatial-
temporal grid with step size 0.2. The results
reveal exceptional boundary condition
treatment, with errors at the spatial
boundaries x = 0 and x = 1 maintaining
near-machine precision levels (10 to 109),
confirming the exact enforcement of
Dirichlet boundary conditions. Notably, the
initial condition at t = 0 also achieves
remarkable accuracy, with errors on the
order of 10°%° to 1071%, demonstrating precise
satisfaction of the initial condition.

Example 3: Non-Homogeneous Dirichlet
Boundary Conditions with Exact Polynomial
Solution

Finally, consider:

0<x<1, t >0,

Dirichlet

Ur = 2Uyy,
subject to non-homogeneous
boundary conditions

u(0,t) = 48t* + 12t — 1,
u(1,t) =48t*+ 12t + 1, t > 0,
and the initial condition
u(x,0) = x* — 2x3 +3x% -1,
0<x<l1.
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The closed form polynomial solution is:

u(x, t) = x* — 2x3 + 24x%t + 3x? — 24tx
+ 48t% + 12t — 1.

For Example 3, the MATLAB computation
with polynomial degrees (M,N) = (2,2)
yields the approximate solution:

u_approx = 1.1605e-14*t"2*x"4 -
3.1162e-14*t"2*x~3 + 2.5597e-
14*%tA2%x 2 - 6.0409e-15*t"2*x +
48.0*t"2 - 1.7813e-14*t*x"4 +

Exact Solution

4.7464e-14%t*x"3 + 24.0*t*x" 2 -
24.0*%t*x + 12.0*t + 1.90*x"4 -
2.0*x"3 + 3.0*x"2 - 1.4501e-15*x -
1.0

The terms corresponding to 48t2 + 24tx? —

24tx + 12t + x* — 2x3 +3x2 —1  exactly
match the exact solution, while the
remaining coefficients are of

order 0(1071%), demonstrating that the
proposed BCICM achieves near-machine
precision accuracy.

Approximate Solution (M=2, N=2)

%
"';";""II
% {,’}III//,,,,
s
lo,l[,'ll[lllllllllfll
2052005, 414, 014
'I,IIIII[,IIII
1
7

@ (b)
Figure 03: (a) Exact analytical solution and (b) BCICM approximate solution with (M=2,N=2) for Example 3.
x=0.0 x=0.2 x=0.4 x=0.6 x=0.8 x=10
t=0.0 0.00000e+00 | 0.00000e+00 2.22040e-16 6.66130e-16 8.88180e-16 8.88180e-16
t=0.2 0.00000e+00 4.44090e-16 8.88180e-16 | 0.00000e+00 8.88180e-16 1.77640e-15
t=0.4 0.00000e+00 1.77640e-15 1.77640e-15 | 0.00000e+00 3.55270e-15 1.77640e-15
t=0.6 0.00000e+00 | 0.00000e+00 | 0.00000e+00 3.55270e-15 3.55270e-15 3.55270e-15
t=0.8 0.00000e+00 7.10540e-15 | 0.00000e+00 7.10540e-15 7.10540e-15 | 0.00000e+00
t=1.0 0.00000e+00 7.10540e-15 7.10540e-15 7.10540e-15 1.42110e-14 | 0.00000e+00

Table 05: Point wise absolute error distribution for Example 3 corresponding to (M, N) = (2,2), evaluated on a

Figure 03 (a) and (b)

illustrate

the

uniform spatial grid with step size 0.2 and time step 0.2.

BCICM solution closely follows the exact

comparison between the exact analytical
solution and the approximate solution for
Example 3 with polynomial
degrees (M,N) = (2,2). As shown, the

solution across the spatial and temporal
domain. The point wise absolute error
distribution, presented in Table 05, confirms
that the discrepancies remain extremely
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small, with values on the order of 10715
throughout most of the domain. The
maximum absolute error is 1.4211 x 10714,
demonstrating that the proposed BCICM
achieves near-machine precision and
provides highly accurate approximation.

5.0 Conclusion

In this study, a novel bivariate Chebyshev
integral collocation method (BCICM) was
developed for solving the one-dimensional
heat equation with Dirichlet boundary and
initial conditions. The proposed approach
leverages a truncated bivariate shifted
Chebyshev series to approximate the spatial
derivatives, reconstructing the solution
through twofold integration while enforcing
boundary  conditions. By employing
Chebyshev nodes in space and Chebyshev—
Gauss—Lobatto (CGL) nodes in time, the
method incorporates initial  condition,
resulting in a semi-analytical solution that is
valid over the entire spatial-temporal
domain rather than solely at discrete grid
points, a key advantage over classical
numerical methods.

The method was applied to three numerical
examples, demonstrating rapid convergence,
high accuracy, and excellent agreement with
exact solutions. Notably, for cases where the
exact solution is polynomial, the BCICM
yields near-machine precision polynomial
approximations.

6.0 Future Work

Rigorous analysis can be performed to
optimally select the polynomial degrees
(M,N) for a desired level of accuracy.
Moreover, the BCICM can be extended to
other types of partial differential equations,
including wave, diffusion—reaction, and heat
equations with source terms, under various
boundary conditions such as Neumann or
mixed conditions. Additionally, the method
is extended to arbitrary spatial-temporal
domains, further enhancing its flexibility
and suitability for a wide range of complex
physical and engineering problems.
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