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Abstract: Partial differential equations (PDEs) play a vital role in modeling diverse physical and 

engineering processes, such as heat conduction and diffusion. However, obtaining analytical 

solutions is often difficult or impossible, which motivates the development of efficient numerical 

techniques. This paper presents a novel bivariate Chebyshev integral collocation method 

(BCICM) for solving the one-dimensional heat equation on the domain [0, 1] × [0, 1] with initial 

and Dirichlet boundary conditions. In the proposed method, the second-order spatial derivative in 

the governing PDE is approximated using a truncated bivariate shifted Chebyshev series of the 

first kind. By performing twofold integration, the approximate solution is reassembled while 

arbitrary integration functions are determined through boundary conditions. The time derivative 

is then evaluated analytically and substituted back into the heat equation, yielding an algebraic 

system for the unknown Chebyshev coefficients. Chebyshev-Gauss (CG) nodes in space and 

Chebyshev–Gauss–Lobatto (CGL) nodes in time are selected as collocation points to ensure the 

initial condition is imposed at 𝑡 = 0. The entire procedure is implemented using MATLAB to 

efficiently compute the Chebyshev coefficients and approximate solutions. Three Numerical 

examples are presented to demonstrate the efficiency, rapid convergence, and accuracy of the 

proposed method.  

Keywords: Bivariate Chebyshev polynomials; Heat equation; Integral collocation; Chebyshev–

Gauss–Lobatto nodes; 

 

1.0 Introduction 

Partial differential equations (PDEs) are 

powerful mathematical tools used to model a 

wide range of dynamical systems in science, 

engineering, physics, biology, and economics. 

Solving a PDE involves determining an 

unknown function that satisfies the governing 

equation along with prescribed initial and/or 

boundary conditions. 

Classical analytical techniques provide exact 

solutions for some special classes of PDEs; 

however, they are often restricted to simple 

geometries, constant coefficients, and specific 

boundary conditions. In many practical 

problems, obtaining analytical solutions is not 

feasible. To address these limitations, a 

variety of numerical approximation 

techniques have been developed to produce 

approximate solutions with error control. 

Among various numerical approaches, 

polynomial approximation methods are 

particularly appealing due to their smoothness, 

continuous differentiability, and ease of 

implementation with modern computational 

tools. By the Weierstrass Approximation 

Theorem, any continuous real-valued function 

defined on a closed interval can be 

approximated arbitrarily well by a polynomial. 

Several families of orthogonal polynomials 

have been employed for numerical 
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approximation, including Taylor, Legendre, 

Gegenbauer, Hermite, and Chebyshev 

polynomials. Among them, Chebyshev 

polynomials are especially advantageous due 

to their minimax property, which minimizes 

the maximum approximation error. This 

makes them particularly effective for 

developing stable and highly accurate 

numerical schemes for differential equations. 

Over the past decades, polynomial-based 

methods have been extensively applied to 

ordinary differential equations (ODEs) due to 

their accuracy and computational efficiency. 

Clenshaw (1957) introduced a Chebyshev 

series approach for linear differential 

equations, providing a systematic technique to 

compute the coefficients in the series. Later, 

Sezer and Kaynak (1996) developed the 

Chebyshev–matrix method, offering a matrix-

based approach to obtain approximate 

polynomial solutions of linear differential 

equations. Akyüz and Sezer (2003) extended 

these ideas to systems of higher-order ODEs 

with variable coefficients, demonstrating the 

applicability of Chebyshev methods to more 

complex systems. These studies confirm that 

Chebyshev-based methods are well-

established, accurate, and computationally 

efficient for a wide range of ODEs. 

The application of Chebyshev techniques to 

partial differential equations (PDEs) has been 

comparatively less explored, particularly for 

multidimensional and nonlinear problems. 

Gumgum, Kurul, and Baykus Savasaneril 

(2018) applied Chebyshev collocation to the 

two-dimensional heat equation, while 

Karunakar and Chakraverty (2019) 

demonstrated the effectiveness of shifted 

Chebyshev polynomials PDEs. Lui and Nataj 

(2020) introduced a space–time Chebyshev 

spectral collocation scheme, improving 

accuracy in both spatial and temporal domains. 

More recently, Ghimire, Tian, and 

Lamichhane (2016), Lovetskiy, Sergeev, 

Kulyabov, and Sevastianov (2024), and Shior 

et al. (2024) applied Chebyshev-based 

methods to linear and nonlinear PDEs in 

engineering contexts. Despite these advances, 

the use of Chebyshev collocation for PDEs 

with diverse boundary and initial conditions 

remains less explored.  

Motivated by this gap, the present work aims 

to develop an efficient Bivariate Chebyshev 

Integral Collocation Method (BCICM) that 

extends the conventional univariate 

framework to a bivariate integral collocation 

approach. The method provides a semi-

analytical approximate solution for the one-

dimensional heat equation with Dirichlet 

boundary and initial conditions.  
 

2.0 Notations and Theory  

2.1 Bivariate Chebyshev Polynomials 

The univariate Chebyshev polynomial of the 

first kind of degree  𝑛 , denoted by  𝑇𝑛(𝑥), is 

defined on the interval [−1, 1]  as:  

𝑇𝑛(𝑥) = cos(𝑛𝜃) ,    𝑥 = cos 𝜃,    0 ≤ 𝜃 ≤ 𝜋, 

𝑛 = 0, 1, 2, . . .. 

The corresponding bivariate Chebyshev 

polynomial of the same kind of degrees 𝑚 

and 𝑛  over the domain [−1, 1] × [−1, 1]  is 

defined as the product of two univariate 

Chebyshev polynomials: 

𝑇𝑚𝑛(𝑥, 𝑦) = 𝑇𝑚(𝑥)𝑇𝑛(𝑦),    𝑚, 𝑛 = 0, 1, 2, . . .. 

2.2 Recurrence Relation 

The univariate Chebyshev polynomials satisfy 

the recurrence relation 

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥), 𝑛 ≥ 1, 

with initial conditions 𝑇0(𝑥) = 1 and 𝑇1(𝑥) =
𝑥. 

Similarly, the bivariate Chebyshev 

polynomials satisfy:  

𝑇(𝑚+1)𝑛(𝑥, 𝑦) = 2𝑥𝑇𝑚𝑛(𝑥, 𝑦) − 𝑇(𝑚−1)𝑛(𝑥, 𝑦), 

𝑇𝑚(𝑛+1)(𝑥, 𝑦) = 2𝑦𝑇𝑚𝑛(𝑥, 𝑦) − 𝑇𝑚(𝑛−1)(𝑥, 𝑦). 
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2. 3 Nodes of Chebyshev Polynomials 

The nodes of Chebyshev polynomials, often 

referred to as zeros of Chebyshev polynomials, 

are widely used as collocation points in 

polynomial interpolation due to their excellent 

numerical properties. 

The univariate Chebyshev polynomial 

𝑇𝑛(𝑥), for 𝑛 ≥ 1  has 𝑛 simple, real zeros 

within the interval (−1, 1) and they are given 

by  

𝑥𝑗 = cos (
2𝑗 + 1

2𝑛
𝜋) , 𝑗 = 0,1, … , (𝑛 − 1). 

This set of points is also known as the 

Chebyshev-Gauss (CG) nodes. A key 

characteristic of these nodes is that they are 

strictly interior points; the endpoints of the 

domain (𝑥 = ±1)  are never included. 

Consequently, while ideal for many 

interpolations, CG nodes are less suitable for 

problems requiring the direct enforcement of 

boundary conditions at the endpoints of 

domain. 

For problems where conditions must be 

imposed at the boundaries, the Chebyshev-

Gauss-Lobatto (CGL) nodes are the preferred 

choice. These points are defined as the 

extrema of 𝑇𝑛(𝑥) on [−1, 1]and are given by: 

𝑥𝑗 = cos (
𝑗𝜋

𝑛
) , 𝑗 = 0, 1, ⋯ , 𝑛. 

Unlike the CG nodes, the CGL set explicitly 

includes the endpoints  (𝑗 = 0 ⇒ 𝑥 = 1, 𝑗 =
𝑛 ⇒ 𝑥 = −1)  making it a natural grid for 

collocation methods in boundary value 

problems. 

The bivariate CG nodes of 𝑇𝑚𝑛(𝑥, 𝑦) are 

obtained as the tensor product of these 

univariate nodes in 𝑥- and 𝑦- directions: 

(𝑥𝑖 , 𝑦𝑗) = (cos
2𝑖 + 1

2𝑚
𝜋 , cos

2𝑗 + 1

2𝑛
𝜋),  

𝑖 = 0,1, … , (𝑚 − 1), 𝑗 = 0,1, … , (𝑛 − 1). 

 

 

2.4 Chebyshev Polynomials on Generic 

Domain and Shifted Chebyshev Polynomials 

The natural domain of the univariate 

Chebyshev polynomials is [−1, 1]. However, 

they can be mapped to any interval [𝑎, 𝑏] 
using the linear transformation: 

𝑥̅ =
𝑥 −

1

2
(𝑎 + 𝑏)

1

2
(𝑏 − 𝑎)

. 

In particular, when the interval is [0, 1], the 

resulting polynomials are known as shifted 

Chebyshev Polynomials, denoted by 𝑇𝑛
∗(𝑥) 

and are defined as   

𝑇𝑛
∗(𝑥) = 𝑇𝑛(2𝑥 − 1). 

This concept extends naturally to the bivariate 

case. Mapping from [−1, 1] × [−1, 1] to a 

general domain [𝑎, 𝑏] × [𝑐, 𝑑] is achieved via 

𝑥̅ =
𝑥 −

1

2
(𝑎 + 𝑏)

1

2
(𝑏 − 𝑎)

, 𝑦̅ =
𝑦 −

1

2
(𝑐 + 𝑑)

1

2
(𝑐 − 𝑑)

. 

The shifted bivariate Chebyshev polynomials 

are then defined as:  

𝑇𝑚𝑛
∗(𝑥, 𝑦) = 𝑇𝑚

∗(𝑥)𝑇𝑛
∗(𝑦), 

𝑚, 𝑛 = 0, 1, 2, …. 

2.5 Approximation of Functions Using 

Bivariate Chebyshev Polynomials 

Any sufficiently smooth function 𝑓(𝑥, 𝑦) 

defined on a rectangular domain [−1, 1] ×
[−1, 1] can be approximated using a truncated 

bivariate Chebyshev series: 

𝑓(𝑥, 𝑦) ≈ ∑ ∑ 𝑎𝑚𝑛𝑇𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛=0

𝑀

𝑚=0

= ∑ ∑ 𝑎𝑚𝑛𝑇𝑚(𝑥)𝑇𝑛(𝑡),

𝑁

𝑛=0

𝑀

𝑚=0

 

where 𝑎𝑚𝑛 are the Chebyshev coefficients to 

be determined. 
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Using the orthogonality property of the 

Chebyshev polynomials with respect to the 

weight function  𝑤(𝑥, 𝑦) =
1

√1−𝑥2√1−𝑦2
, the 

coefficients can be computed via continuous 

orthogonal projection: 

𝑎𝑚𝑛 =
𝛼𝑚𝛼𝑛

𝜋2
∫ ∫

𝑇𝑚𝑛(𝑥, 𝑦)𝑓(𝑥, 𝑦)

√1 − 𝑥2√1 − 𝑦2
𝑑𝑥𝑑𝑦,

1

−1

1

−1

 

where the scaling factors are defined as 

𝛼𝑘 = {
1,   𝑘 = 0,

 
2,    𝑘 ≥ 1.

 

In practice, the integrals are often 

approximated using discrete orthogonal 

projection at the CG nodes as follows: 

𝑎𝑚𝑛 ≈
𝛼𝑚𝛼𝑛

𝑀𝑁
∑ ∑ 𝑓(𝑥𝑖, 𝑦𝑗)𝑇𝑚𝑛(𝑥𝑖 , 𝑦𝑗),

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 

where (𝑥𝑖 , 𝑥𝑗),     
 𝑖 = 0,1, … , (𝑀 − 1),      𝑗 =

0,1, … , (𝑁 − 1), are bivariate CG nodes, and 

𝛼𝑘 is defined as above. 

 

 

3.0 Methodology 

(i). Problem Definition 

We consider the one-dimensional heat conduction equation 

𝑢𝑡 = 𝛼𝑢𝑥𝑥,               0 < 𝑥 < 1, 𝑡 > 0, 

subject to the initial and Dirichlet boundary conditions 

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢(0, 𝑡) = 𝛾0(𝑡), 𝑢(1, 𝑡) = 𝛾1(𝑡), 

where 𝛼 > 0 is the thermal diffusivity constant. 

(1) 

(ii). Approximation of  𝒖𝒙𝒙 using Bivariate Shifted Chebyshev Expansion 

The second-order spatial derivative 𝑢𝑥𝑥(𝑥, 𝑡)  is approximated by a finite double series 

expansion in shifted bivariate Chebyshev polynomials over  

𝑢𝑥𝑥(𝑥, 𝑡) ≈ ∑ ∑ 𝑎𝑚𝑛𝑇𝑚𝑛
∗ (𝑥, 𝑡) =

𝑁

𝑛=0

𝑀

𝑚=0

∑ ∑ 𝑎𝑚𝑛𝑇𝑚
∗ (𝑥)𝑇𝑛

∗(𝑡),

𝑁

𝑛=0

𝑀

𝑚=0

 (2) 

where 𝑎𝑚𝑛  are unknown coefficients to be determined and  𝑇𝑘
∗(𝑥)  denotes the shifted 

Chebyshev polynomial of degree 𝑘 defined on the interval [0, 1]. 
 

(iii). Integration with Respect to 𝒙 

Integrating equation (2) twice with respect to 𝑥 gives an approximation for 𝑢(𝑥, 𝑡): 

𝑢(𝑥, 𝑡) ≈ ∑ ∑ 𝑎𝑚𝑛𝑇𝑚
∗̅̅ ̅̅ (𝑥)𝑇𝑛

∗(𝑡) + 𝑥𝑔(𝑡) + ℎ(𝑡),

𝑁

𝑛=0

𝑀

𝑚=0

 (3) 

where 𝑇𝑚
∗̅̅ ̅̅ (𝑥)  denotes the twice-integrated form of 𝑇𝑚

∗ (𝑥),  and 𝑔(𝑡), ℎ(𝑡)  are arbitrary 

functions of 𝑡 arising from integration constants. 
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(iv). Enforcement of Dirichlet Boundary Conditions 

Applying the boundary conditions 𝑢(0, 𝑡) = 𝛾0(𝑡) and 𝑢(1, 𝑡) = 𝛾1(𝑡) to equation (3): 

Evaluate (3) at 𝑥 = 0: 

𝑢(0, 𝑡) = 𝛾0(𝑡) = ∑ ∑ 𝑎𝑚𝑛𝑇𝑚
∗̅̅ ̅̅ (0)𝑇𝑛

∗(𝑡) + ℎ(𝑡),

𝑁

𝑛=0

𝑀

𝑚=0

 

yielding 

ℎ(𝑡) = 𝛾0(𝑡) − ∑ ∑ 𝑎𝑚𝑛𝑇𝑚
∗̅̅ ̅̅ (0)𝑇𝑛

∗(𝑡).

𝑁

𝑛=0

𝑀

𝑚=0

 
(𝟒) 

Evaluate (3) at 𝑥 = 1: 

𝑢(1, 𝑦) = 𝛾1(𝑡) = ∑ ∑ 𝑎𝑚𝑛𝑇𝑚
∗̅̅ ̅̅ (1)𝑇𝑛

∗(𝑡) + 𝑔(𝑡) + ℎ(𝑡).

𝑁

𝑛=0

𝑀

𝑚=0

 

⟹ 𝑔(𝑡) = 𝛾1(𝑡) − ∑ ∑ 𝑎𝑚𝑛𝑇𝑚
∗̅̅ ̅̅ (1)𝑇𝑛

∗(𝑡) − ℎ(𝑡)

𝑁

𝑛=0

𝑀

𝑚=0

. 

Eliminating ℎ(𝑡) using equation (4), we obtain 

𝑔(𝑡) = 𝛾1(𝑡) − 𝛾0(𝑡) − ∑ ∑ 𝑎𝑚𝑛(𝑇𝑚
∗̅̅ ̅̅ (1) − 𝑇𝑚

∗̅̅ ̅̅ (0))𝑇𝑛
∗(𝑡).

𝑁

𝑛=0

𝑀

𝑚=0

 (𝟓) 

Now substituting 𝑔(𝑡) and ℎ(𝑡) using equations (4) and (5) gives 

𝑢(𝑥, 𝑡) ≈ ∑ ∑ 𝑎𝑚𝑛Ψ𝑚(𝑥)𝑇𝑛
∗(𝑡) + 𝑥𝛾1(𝑡) + (1 − 𝑥)𝛾0(𝑡),

𝑁

𝑛=0

𝑀

𝑚=0

 
(𝟔) 

where 

Ψ𝑚(𝑥) = [𝑇𝑚
∗̅̅ ̅̅ (𝑥) − 𝑥𝑇𝑚

∗̅̅ ̅̅ (1) − (1 − 𝑥)𝑇𝑚
∗̅̅ ̅̅ (0)]. 

 

(v). Computation of 𝑢𝑡 

Differentiating equation (6) partially with respect to 𝑡, we obtain: 

𝑢𝑡(𝑥, 𝑡) = ∑ ∑ 𝑎𝑚𝑛Ψ𝑚(𝑥)𝑇𝑛
∗′(𝑡) + 𝑥𝛾1

′(𝑡) + (1 − 𝑥)𝛾0
′(𝑡)

𝑁

𝑛=0

.

𝑀

𝑚=0

 (𝟕) 

(vi). Substitution into the Heat Equation 

Substituting equations (2) and (7) into the governing PDE (1) gives: 

∑ ∑ 𝑎𝑚𝑛[Ψ𝑚(𝑥)𝑇𝑛
∗′(𝑡) − 𝛼𝑇𝑚

∗ (𝑥)𝑇𝑛
∗(𝑡)] = (𝑥 − 1)𝛾0

′(𝑡) − 𝑥𝛾1
′(𝑡)

𝑁

𝑛=0

𝑀

𝑚=0

. (8) 

(vii). Collocation Strategy  
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From equation (6),  there are a total of  
(𝑀 + 1)(𝑁 + 1)  unknown coefficients 

𝑎𝑚𝑛  to be determined in order to 

construct the approximate solution 

𝑢(𝑥, 𝑡). However, it is important to note 

that the initial condition has not yet been 

incorporated into the formulation. To 

address this, appropriate collocation 

strategy is introduced as follows. 

Since the boundary conditions have 

already been employed to eliminate the 

arbitrary functions 𝑔(𝑡) and ℎ(𝑡) arising 

from the twofold integration of the 

double Chebyshev expansion of  𝑢𝑥𝑥, it is 

desirable to use pure shifted CG nodes of 

𝑇𝑀+1
∗ as collocation points for spatial 

variable x. These nodes are defined by 

𝑥𝑖
∗ =

1

2
(1 + cos (

(2𝑖 + 1)

2(𝑀 + 1)
) 𝜋) ,

𝑖 = 0, 1, ⋯ , 𝑀. 

These (𝑀 + 1)  nodes lie strictly within 

the open interval  (0, 1), thereby 

excluding the endpoints 𝑥 = 0 and 𝑥 = 1 

that are already accounted for through the 

imposed boundary conditions. This 

choice effectively avoids redundancy in 

the system of equations. 

To incorporate the initial condition into 

the collocation framework, the shifted 

Chebyshev–Gauss–Lobatto (CGL) nodes 

are adopted for the temporal variable 𝑡, 
given by 

𝑡𝑗
∗ =

𝑇

2
(1 − cos (

𝑗𝜋

𝑁
)) ,    𝑗 = 0, 1, ⋯ , 𝑁, 

Where 𝑇 denotes the upper bound of the 

temporal domain. For simplicity, we set 

𝑇 = 1, allowing the direct use of shifted 

CGL nodes within the interval  [0, 1] .  

These (𝑁 + 1)  nodes include both 

endpoints of the interval, ensuring that 

𝑡 = 0 (corresponding to 𝑗 = 0 ) is 

explicitly present. Hence, the initial 

condition is naturally incorporated into 

the collocation process, while 

maintaining high accuracy near the 

boundaries due to the clustering property 

of the CGL nodes. 

The collocation points (𝑥𝑖
∗, 𝑡0

∗ = 0)  for 

𝑖 = 0, 1, ⋯ , 𝑀  are substituted into 

equation (6)  to incorporate the initial 

condition. This yields (𝑀 + 1) equations 

involving the unknown coefficients 𝑎𝑚𝑛 

(𝑖 = 0, 1, ⋯ , 𝑀;  𝑗 = 1, 2, ⋯ , 𝑁) as 

follows:

∑ ∑ 𝑎𝑚𝑛Ψ𝑚(𝑥𝑖
∗)𝑇𝑛

∗(0)

𝑁

𝑛=0

𝑀

𝑚=0

= 𝑢0(𝑥𝑖
∗) − 𝑥𝑖

∗𝛾1(0) − (1 − 𝑥𝑖
∗)𝛾0(0). (9) 

Similarly, the collocation points 
(𝑥𝑖

∗, 𝑡𝑘
∗)  for 𝑖 = 0, 1, ⋯ , 𝑀  and 𝑗 =

1, 2, ⋯ , 𝑁 are applied to equation (8) to 

enforce the governing partial 

differential equation.  

This results in 𝑁(𝑀 + 1) additional 

equations for the remaining unknown 

coefficients 𝑎𝑚𝑛  (𝑖 = 0, 1, ⋯ , 𝑀;  𝑗 =
1, 2, ⋯ , 𝑁): 

∑ ∑ 𝑎𝑚𝑛 [Ψ𝑚(𝑥𝑖
∗)𝑇𝑛

∗′(𝑡𝑗
∗) − 𝛼𝑇𝑚

∗ (𝑥𝑖
∗)𝑇𝑛

∗(𝑡𝑗
∗)] = −𝑥𝑖

∗𝛾1
′(𝑡𝑗

∗) − (1 − 𝑥𝑖
∗)𝛾0

′(𝑡𝑗
∗)

𝑁

𝑛=0

𝑀

𝑚=0

. 
(10) 

Combining equations (9) and (10), we 

obtain a total of (𝑀 + 1)(𝑁 + 1) linear 

algebraic equations for the (𝑀 +

1)(𝑁 + 1)  unknown coefficients  𝑎𝑚𝑛  . 

This system can be written compactly 

in matrix form as: 
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[𝜑𝑚𝑛
𝑖𝑗

]
𝑃×𝑃

× [𝑎𝑚𝑛]𝑃×1 = [𝑏𝑖𝑗]
𝑃×1

, (11) 

where 𝑃 = (𝑀 + 1)(𝑁 + 1), 𝑎𝑚𝑛 are unknown coefficients to be determined and the matrix 

entries are defined as: 

 

𝜑𝑚𝑛
𝑖𝑗

= {

Ψ𝑚(𝑥𝑖
∗)𝑇𝑛

∗(0),                                                                                    𝑖 = 0, 1, ⋯ , 𝑀;  𝑗 = 0,
 

Ψ𝑚(𝑥𝑖
∗)𝑇𝑛

∗′(𝑡𝑗
∗) − 𝛼𝑇𝑚

∗ (𝑥𝑖
∗)𝑇𝑛

∗(𝑡𝑗
∗),                                𝑖 = 0, 1, ⋯ , 𝑀;  𝑗 = 1, 2, ⋯ , 𝑁,

 

and  

𝑏𝑖𝑗 = {

𝑢0(𝑥𝑖
∗) − 𝑥𝑖

∗𝛾1(0) − (1 − 𝑥𝑖
∗)𝛾0(0),                                              𝑖 = 0, 1, ⋯ , 𝑀;  𝑗 = 0,

 
−𝑥𝑖

∗𝛾1
′(𝑡𝑗

∗) − (1 − 𝑥𝑖
∗)𝛾0

′(𝑡𝑗
∗),                                         𝑖 = 0, 1, ⋯ , 𝑀;  𝑗 = 1, 2, ⋯ , 𝑁.

 

Solving the linear system (11) provides all 

unknown coefficients  𝑎𝑚𝑛, which are then 

substituted back into equation (6)  to 

reconstruct the approximate solution 

𝑢_𝑎𝑝𝑝𝑟𝑜𝑥 over the spatial–temporal domain. 

Since our procedure begins by expanding 

the second derivative of the unknown 

function 𝑢(𝑥, 𝑡) with respect to the spatial 

variable 𝑥  in terms of truncated bivariate 

Chebyshev polynomials up to degree 𝑀 and 

𝑁 in 𝑥 and 𝑡, respectively, and the unknown 

function is subsequently recovered through a 

two-fold integration, the resulting 

approximate polynomial solution attains a 

maximum degree of (𝑀 + 2) in 𝑥, while the 

temporal variable 𝑡  remains bounded by a 

maximum degree of 𝑁. 

4.0 Results and Discussion 

To validate the effectiveness of the proposed 

BCICM, three one-dimensional heat 

conduction equations are investigated. These 

examples include cases with homogeneous 

and non-homogeneous Dirichlet boundary 

conditions and involve both polynomial and 

non-polynomial exact solutions. The 

numerical approximations are compared 

against analytical solutions, and 

convergence behavior is analyzed in terms 

of the spatial and temporal polynomial 

degrees 𝑀 and 𝑁. 

Example 1: Homogeneous Boundary 

Conditions with an Infinite Series Exact 

Solution 

We consider 

𝑢𝑡 = 𝑢𝑥𝑥,               0 < 𝑥 < 1, 𝑡 > 0, 

subject to homogeneous Dirichlet boundary 

conditions 

 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0, 𝑡 > 0,  

and the initial temperature distribution 

𝑢(𝑥, 0) = 𝑥(1 − 𝑥), 0 < 𝑥 < 1. 

The exact analytical solution is represented 

by the Fourier sine series: 

𝑢(𝑥, 𝑡) = ∑
4

𝑛3𝜋3
[1 − (−1)𝑛] sin(𝑛𝜋𝑥)𝑒−𝑛2𝜋2𝑡.

∞

𝑛=1

 

Using the proposed BCICM, the MATLAB-

generated approximate solution 𝑢_𝑎𝑝𝑝𝑟𝑜𝑥 

for Example 1 with  𝑀 = 2  and 𝑁 = 2  is 

obtained as follows: 
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u_approx = -0.41591*t^2*x^4 + 

0.83183*t^2*x^3 - 1.994*t^2*x^2 + 

1.5781*t^2*x + 0.38251*t*x^4 - 

0.76503*t*x^3 + 2.9975*t*x^2 - 

2.615*t*x -2.3709e-16*x^4 + 3.367e-

16*x^3 - 1.0*x^2 + 1.0*x 

It is evident from this polynomial 

representation that the highest degree in 𝑥 is 

4 (i.e., 𝑀 + 2) and the highest degree in 𝑡 is 

2 (i.e.,  𝑁 ). This observation is in perfect 

agreement with the theoretical expectation:  

Since the exact solution is expressed as an 

infinite series, we truncate the series at 𝑛 =
30 and treat this truncated form as the exact 

solution for the purpose of comparison with 

the approximate solution.

 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

 

 

 

 

 

 

 

 

 

(c) (d) 

Figure 01:  (a) Exact analytical solution and (b)–(d) BCICM approximate solutions with increasing polynomial 

degrees (𝑀, 𝑁) for Example 1. 

Above, Figure 01(a) displays the exact 

analytical solution of Example 1, while 

Figures 01(b)–(d) present the numerical 

approximations obtained using the proposed 

BCICM for different combinations of 

polynomial degrees (𝑀, 𝑁). As the values of 

𝑀 and 𝑁 increase, the approximate solutions 

exhibit noticeable improvements in spatial–

temporal accuracy and closely follow the 

behavior of the exact solution. These visual 

results clearly demonstrate the convergence 

characteristics of the proposed method. 
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M, N Maximum Absolute Error 

M=2, N=2 9.89906e-02 

M=1, N=3 2.32573e-02 

M=2, N=4 8.96684e-03 

M=4, N=6 1.65589e-03 

M=5, N=7 3.03599e-04 

M=7, N=5 2.39561e-03 

M=5, N=8 4.76440e-04 

M=8, N=10 1.65164e-04 

Table 01: Maximum absolute error for Example 1 

under different (𝑀, 𝑁) combinations, evaluated on a 

uniform spatial–temporal grid with a step size of  0.2. 

Table 01 presents the maximum absolute 

errors computed on a uniform spatial-

temporal grid with step size 0.2 for various 

polynomial degree combinations (𝑀, 𝑁) . 

The results demonstrate a systematic 

reduction in error as the polynomial degrees 

increase, with the maximum error 

decreasing from 9.89906×10-2 for (𝑀, 𝑁) =
(2, 2) to 1.65164×10-4 for (𝑀, 𝑁) = (8, 10). 

This consistent error reduction confirms the 

spectral convergence properties of the 

proposed BCICM. The observed non-

monotonic behavior in select cases, 

particularly the comparison between 
(𝑀 = 7, 𝑁 = 5)  with error 2.39561×10-3 

and (𝑀 = 5, 𝑁 = 7) with error 

3.03599×10-4 reveals an important interplay 

between spatial and temporal resolution 

requirements, suggesting that optimal 

accuracy depends on balanced refinement in 

both dimensions rather than maximizing 

either parameter independently. 

 

 𝒙 = 𝟎. 𝟎 𝒙 = 𝟎. 𝟐 𝒙 = 𝟎. 𝟒 𝒙 = 𝟎. 𝟔 𝒙 = 𝟎. 𝟖 𝒙 = 𝟏. 𝟎 

𝒕 = 𝟎. 𝟎 0.00000e+00 1.00820e-06 6.26720e-07 6.26720e-07 1.00820e-06 3.92010e-17 

𝒕 = 𝟎. 𝟐 0.00000e+00 1.65160e-04 9.46420e-05 9.46420e-05 1.65160e-04 4.38920e-18 

𝒕 = 𝟎. 𝟒 0.00000e+00 1.59480e-04 1.09840e-04 1.09840e-04 1.59480e-04 6.09710e-19 

𝒕 = 𝟎. 𝟔 0.00000e+00 1.39760e-04 9.04460e-05 9.04460e-05 1.39760e-04 8.46960e-20 

𝒕 = 𝟎. 𝟖 0.00000e+00 1.55560e-05 6.54210e-06 6.54210e-06 1.55560e-05 1.17650e-20 

𝒕 = 𝟏. 𝟎 0.00000e+00 7.36630e-06 4.93290e-06 4.93280e-06 7.36640e-06 1.63430e-21 

Table 02: Point wise absolute error distribution for Example 1 corresponding to (𝑀, 𝑁) = (8,10), evaluated 

on a uniform spatial grid with step size 0.2 and time step 0.2. 
 

Table 02 provides the point wise error 

distribution on the same uniform grid of step 

size 0.2 for the case (𝑀, 𝑁) = (8,10). Due 

to the exact enforcement of Dirichlet 

boundary conditions, the numerical error at 

the boundaries remains nearly zero. Across 

the interior nodes, the error remains 

extremely small at all-time levels, 

demonstrating the reliability and robustness 

of the method throughout the computational 

domain. 

 

 

Example 2: Non-Homogeneous Boundary 

Conditions with Finite-Term Exact Solution 

We next consider the following one-

dimensional heat equation: 

𝑢𝑡 = 3𝑢𝑥𝑥,         0 < 𝑥 < 1, 𝑡 > 0, 

subject to the boundary conditions 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 1, 𝑡 > 0, 

and the initial condition 

𝑢(𝑥, 0) = 𝑥 + sin(𝜋𝑥) , 0 < 𝑥 < 1. 

The exact solution of the above PDE is  

𝑢(𝑥, 𝑡) = 𝑥 + 𝑒−3𝜋2𝑡 sin(𝜋𝑥). 
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The MATLAB generated approximate 

solution u_approx for Example 2; computed 

via the proposed BCICM with 𝑀 = 1 , 𝑁 =

3, expressed as: 

 

u_approx = -3.2052e-15*t^3*x^3 + 
16.596*t^3*x^2 - 16.596*t^3*x + 
6.4772e-15*t^2*x^3 - 34.23*t^2*x^2 + 
34.23*t^2*x - 3.8962e-15*t*x^3 + 
21.134*t*x^2 - 21.134*t*x + 6.2804e-
16*x^3 - 3.5521*x^2 + 4.5521*x

   

 

 

 

 

 

 

 

 

(a)  (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) (d) 

Figure 02:  (a) Exact analytical solution and (b)–(d) BCICM approximate solutions with increasing polynomial 

degrees (𝑀, 𝑁) for Example 2. 

Figure 02 (b)–(d) shows that the 

approximate solutions for Example 2 

increasingly resemble the exact solution 

depicted in Figure 02(a) as the polynomial 

degrees are increased. 

M, N Maximum Absolute Error 

M=2, N=2 4.78743e-01 

M=1, N=3 1.32250e-01 

M=2, N=4 9.12547e-02 

M=4, N=6 5.97661e-02 

M=5, N=7 1.41425e-02 

M=7, N=5 8.80991e-02 

M=5, N=8 1.15563e-02 

M=8, N=10 4.68940e-03 

M=12, N=14 1.18728e-04 

Table 03: Maximum absolute error for Example 2 

under different (𝑀, 𝑁) combinations, evaluated on a 

uniform spatial–temporal grid with a step size of 0.2. 
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Table 03 reports the maximum absolute 

errors for Example 2 obtained using 

different combinations of (𝑀, 𝑁) .  As 

expected, the error decreases progressively 

when the polynomial degrees in both the 

spatial and temporal domains are increased, 

confirming the convergence of the proposed 

BCICM.  

However, the reduction rate is slightly lower 

compared to Example 1, which may be 

attributed to the inhomogeneous nature of 

the boundary conditions in this problem. 

Furthermore, a distinct deviation in error can 

be observed for the cases (𝑀, 𝑁) = (5, 7) 

and (7, 5) . Although both settings involve 

relatively high polynomial degrees, the 

resulting errors exhibit a noticeable 

difference. This behavior can be explained 

by the imbalance in spatial–temporal 

resolution under the BCICM formulation. 

Specifically, when 𝑀 = 7  and 𝑁 = 5 , the 

effective spatial degree becomes 9 , while 

the temporal degree remains 7, leading to a 

resolution mismatch that negatively affects 

the approximation accuracy. Conversely, 

(𝑀, 𝑁) = (5, 7)maintains a more balanced 

resolution between the spatial and temporal 

domains, yielding a lower error. 

These findings highlight that selecting 

polynomial degrees that maintain a balanced 

approximation degree in both dimensions 

leads to better accuracy, further supporting 

the observations made in Example 1. 

 

 

 𝒙 = 𝟎. 𝟎 𝒙 = 𝟎. 𝟐 𝒙 = 𝟎. 𝟒 𝒙 = 𝟎. 𝟔 𝒙 = 𝟎. 𝟖 𝒙 = 𝟏. 𝟎 

𝒕 = 𝟎. 𝟎 0.00000e+00 4.88500e-15 1.11020e-15 8.88180e-16 5.32910e-15 1.55430e-15 

𝒕 = 𝟎. 𝟐 0.00000e+00 7.33780e-05 1.18730e-04 1.18730e-04 7.33780e-05 8.85960e-14 

𝒕 = 𝟎. 𝟒 0.00000e+00 4.97290e-05 8.04640e-05 8.04640e-05 4.97290e-05 6.43060e-12 

𝒕 = 𝟎. 𝟔 0.00000e+00 6.56370e-05 1.06200e-04 1.06200e-04 6.56370e-05 5.01890e-11 

𝒕 = 𝟎. 𝟖 0.00000e+00 4.02350e-05 6.51020e-05 6.51020e-05 4.02350e-05 4.11780e-10 

𝒕 = 𝟏. 𝟎 0.00000e+00 1.25890e-06 2.03700e-06 2.03710e-06 1.25920e-06 4.02660e-10 

Table 04: Point wise absolute error distribution for Example 2 corresponding to (𝑀, 𝑁) = (12,14), evaluated 

on a uniform spatial grid with step size 0.2 and time step 0.2. 

Table 04 displays the point wise absolute 

error distribution for Example 2 using 

BCICM with polynomial degrees (𝑀, 𝑁) =
(12,14) evaluated on a uniform spatial-

temporal grid with step size 0.2. The results 

reveal exceptional boundary condition 

treatment, with errors at the spatial 

boundaries 𝑥 =  0 and 𝑥 =  1 maintaining 

near-machine precision levels (10-14 to 10-10), 

confirming the exact enforcement of 

Dirichlet boundary conditions. Notably, the 

initial condition at 𝑡 =  0 also achieves 

remarkable accuracy, with errors on the 

order of 10-15 to 10-16, demonstrating precise 

satisfaction of the initial condition. 

Example 3: Non-Homogeneous Dirichlet 

Boundary Conditions with Exact Polynomial 

Solution 

Finally, consider: 

𝑢𝑡 = 2𝑢𝑥𝑥,          0 < 𝑥 < 1, 𝑡 > 0, 

subject to non-homogeneous Dirichlet 

boundary conditions 
 

𝑢(0, 𝑡) = 48𝑡2 + 12𝑡 − 1, 

  𝑢(1, 𝑡) = 48𝑡2 + 12𝑡 + 1,   𝑡 > 0,  

and the initial condition 

𝑢(𝑥, 0) = 𝑥4 − 2𝑥3 + 3𝑥2 − 1,

0 < 𝑥 < 1. 
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The closed form polynomial solution is: 

𝑢(𝑥, 𝑡) = 𝑥4 − 2𝑥3 + 24𝑥2𝑡 + 3𝑥2 − 24𝑡𝑥

+ 48𝑡2 + 12𝑡 − 1. 

For Example 3, the MATLAB computation 

with polynomial degrees (𝑀, 𝑁) = (2,2) 

yields the approximate solution: 

u_approx = 1.1605e-14*t^2*x^4 - 
3.1162e-14*t^2*x^3 + 2.5597e-
14*t^2*x^2 - 6.0409e-15*t^2*x + 
48.0*t^2 - 1.7813e-14*t*x^4 + 

4.7464e-14*t*x^3 + 24.0*t*x^2 - 
24.0*t*x + 12.0*t + 1.0*x^4 - 
2.0*x^3 + 3.0*x^2 - 1.4501e-15*x - 
1.0 

The terms corresponding to  48𝑡2 + 24𝑡𝑥2 −
24𝑡𝑥 + 12𝑡 + 𝑥4 − 2𝑥3 + 3𝑥2 − 1 exactly 

match the exact solution, while the 

remaining coefficients are of 

order 𝓞(𝟏𝟎−𝟏𝟒),  demonstrating that the 

proposed BCICM achieves near-machine 

precision accuracy. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)  (b) 

Figure 03:  (a) Exact analytical solution and (b) BCICM approximate solution with (M=2,N=2) for Example 3. 

 𝒙 = 𝟎. 𝟎 𝒙 = 𝟎. 𝟐 𝒙 = 𝟎. 𝟒 𝒙 = 𝟎. 𝟔 𝒙 = 𝟎. 𝟖 𝒙 = 𝟏. 𝟎 

𝒕 = 𝟎. 𝟎 0.00000e+00 0.00000e+00 2.22040e-16 6.66130e-16 8.88180e-16 8.88180e-16 

𝒕 = 𝟎. 𝟐 0.00000e+00 4.44090e-16 8.88180e-16 0.00000e+00 8.88180e-16 1.77640e-15 

𝒕 = 𝟎. 𝟒 0.00000e+00 1.77640e-15 1.77640e-15 0.00000e+00 3.55270e-15 1.77640e-15 

𝒕 = 𝟎. 𝟔 0.00000e+00 0.00000e+00 0.00000e+00 3.55270e-15 3.55270e-15 3.55270e-15 

𝒕 = 𝟎. 𝟖 0.00000e+00 7.10540e-15 0.00000e+00 7.10540e-15 7.10540e-15 0.00000e+00 

𝒕 = 𝟏. 𝟎 0.00000e+00 7.10540e-15 7.10540e-15 7.10540e-15 1.42110e-14 0.00000e+00 

Table 05: Point wise absolute error distribution for Example 3 corresponding to (𝑀, 𝑁) = (2,2), evaluated on a 

uniform spatial grid with step size 0.2 and time step 0.2. 

Figure 03 (a) and (b) illustrate the 

comparison between the exact analytical 

solution and the approximate solution for 

Example 3 with polynomial 

degrees (𝑀, 𝑁) = (2,2).  As shown, the 

BCICM solution closely follows the exact 

solution across the spatial and temporal 

domain. The point wise absolute error 

distribution, presented in Table 05, confirms 

that the discrepancies remain extremely 
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small, with values on the order of 10−15 

throughout most of the domain. The 

maximum absolute error is 1.4211 × 10−14, 

demonstrating that the proposed BCICM 

achieves near-machine precision and 

provides highly accurate approximation. 

5.0 Conclusion 

In this study, a novel bivariate Chebyshev 

integral collocation method (BCICM) was 

developed for solving the one-dimensional 

heat equation with Dirichlet boundary and 

initial conditions. The proposed approach 

leverages a truncated bivariate shifted 

Chebyshev series to approximate the spatial 

derivatives, reconstructing the solution 

through twofold integration while enforcing 

boundary conditions. By employing 

Chebyshev nodes in space and Chebyshev–

Gauss–Lobatto (CGL) nodes in time, the 

method incorporates initial condition, 

resulting in a semi-analytical solution that is 

valid over the entire spatial-temporal 

domain rather than solely at discrete grid 

points, a key advantage over classical 

numerical methods. 

The method was applied to three numerical 

examples, demonstrating rapid convergence, 

high accuracy, and excellent agreement with 

exact solutions. Notably, for cases where the 

exact solution is polynomial, the BCICM 

yields near-machine precision polynomial 

approximations.  

6.0 Future Work 

Rigorous analysis can be performed to 

optimally select the polynomial degrees 

(𝑀, 𝑁)  for a desired level of accuracy. 

Moreover, the BCICM can be extended to 

other types of partial differential equations, 

including wave, diffusion–reaction, and heat 

equations with source terms, under various 

boundary conditions such as Neumann or 

mixed conditions. Additionally, the method 

is extended to arbitrary spatial-temporal 

domains, further enhancing its flexibility 

and suitability for a wide range of complex 

physical and engineering problems. 
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