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Abstract: Bounded rationality departs from the traditional economic assumption of fully rational
agents by highlighting the impact of cognitive and computational constraints on human decisions.
This review synthesizes recent progress in computational intelligence that addresses how to
model and enhance rationality within the bounds of these limitations. We discuss foundational
theories, including Herbert Simon’s bounded rationality and Ariel Rubinstein’s algorithmic
framework, alongside contemporary computational approaches involving heuristic search,
machine learning, and multi-agent systems. Special attention is given to methods that bridge
psychology, economics, and artificial intelligence, offering realistic models of decision-making
and examining their consequences for economics, behavioral finance, and autonomous system
design. The review concludes by identifying future research opportunities for creating more
adaptable and robust agents capable of navigating complex environments under limited
information and computational resources.
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Introduction
The traditional economic model assumes that
agents have complete information and infinite
computational ability, allowing for entirely
rational choices. In opposition to this ideal,
Herbert Simon introduced the concept of
bounded rationality, suggesting that actual
decision-makers operate within cognitive and
environmental limitations that limit their
capacity to optimize (Simon, 1957). This
essential change requires different models that
encompass heuristics, satisficing, and
adaptive reasoning in uncertain conditions
Ariel Rubinstein (1986) was the first to
develop formal economic models that
incorporate bounded rationality by depicting
agents as algorithms limited by computational

constraints, thereby engaging in strategic
interactions. These viewpoints emphasize that
assessing rationality should consider the
computational resources available and the
heuristics employed, situating economic
actions within broader cognitive frameworks.
In recent decades, notable advancements have
been made in computational intelligence,
encompassing artificial intelligence (AI),
machine learning, and heuristic search, which
offer mechanistic structures for implementing
bounded rationality. These advancements
enable the creation of agents that demonstrate
effective rationality: computationally viable
approximations of optimal rational behavior
suited to particular contexts.
This examination systematically investigates
the convergence of bounded rationality and

Original Research Article

*Corresponding Author: Magda Hussaon
© The Author(s) 2025, This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC)



Available Online:

2025; 1-1 | 32-36

P a g e 33 |

computational intelligence, aiming to clarify
theoretical foundations, assess methodological
advancements, and pinpoint applications
across economic modeling, behavioral
sciences, and autonomous decision-making
systems.

Foundational Theories of Bounded
Rationality
Table 1: Foundational Theories of Bounded
Rationality

Theory &
Proponent Core Concept Key

Reference Distinctive Feature

Satisficing (Herbert
Simon, 1957)

Agents settle for “good enough”
solutions using aspiration-level
heuristics rather than optimizing fully.

Simon
(1957)

Balances aspiration
levels and
computational limits

Algorithmic Model
(Rubinstein, 1986)

Agents modeled as algorithms with
finite computational steps in strategic
interactions.

Rubinstein
(1986)

Formalizes cost of
computation in
decision processes

Prospect Theory
(Kahneman &
Tversky, 1979)

Humans evaluate gains and losses
asymmetrically, deviating from
expected-value maximization.

Kahneman
(2011)

Captures framing
effects, loss aversion

Dual-Process (Evans
& Stanovich, 2013)

Decision making arises from
interaction of fast, intuitive (System 1)
and slow, deliberative (System 2).

Evans &
Stanovich
(2013)

Highlights interplay
between automatic
and controlled
cognition

Herbert Simon and Satisficing
Simon’s foundational research highlighted the
challenges of optimization in intricate settings
because of constraints in information
processing, focus, and time (Simon, 1957).
Instead, agents use satisficing, aiming for
satisfactory—not always optimal—solutions
by following heuristic search directed by
aspiration levels. This procedure represents a
harmony between ambition and practicality.
Rubinstein’s Computational Rationality
Model

Rubinstein (1986) proposed a model in which
agents act as computational entities
participating in strategic interactions limited
by finite resources and restrictions. This
framework clarifies how computational
expenses affect strategy choice and belief
development, redirecting rationality
assessment to a procedural viewpoint that
highlights algorithmic practicality.
Computational Intelligence Models of
Effective Rationality
Table 2: Computational Intelligence
Approaches to Effective Rationality

Method Description Applications Strengths Limitations
Heuristic
Search

Approximate search (e.g.,
genetic algorithms, simulated
annealing) guided by heuristics.

Combinatorial
optimization,
scheduling

Balances
exploration/expl
oitation

May converge to
local optima

Reinforcem
ent
Learning

Agents learn policies through
trial-and-error interactions and
reward signals.

Robotics, game
playing, resource
allocation

Adapts to
dynamic
environments

Requires large data,
can be unstable

Multi-
Agent
Systems

Multiple bounded agents
coordinate or compete within
shared environments.

Traffic control,
market
simulations

Models
emergent,
collective
behaviors

Complexity grows
with agent count

Neural
Heuristic
Hybrids

Neural networks learn
heuristics or value functions to
guide search processes.

Real-time
decision support,
game AI

Learns problem-
specific
heuristics

Training costs and
interpretability
issues
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Heuristic and Metaheuristic Search
Algorithms
Methodological strategies, such as genetic
algorithms, simulated annealing, and Monte
Carlo tree search, have been employed to
replicate bounded rationality, enabling agents
to explore extensive solution domains through
approximate, heuristic-driven search methods
(Russell & Norvig, 2021). These techniques
achieve a compromise between exploration
and exploitation while adhering to
computational limits

Machine Learning and Adaptive Behavior
Reinforcement learning and deep learning
architectures enable agents to learn optimal
policies from interaction without explicit
programming, adapting flexibly to complex
environments (Sutton & Barto, 2018). By
integrating cost-aware exploration, these
models instantiate practical bounded
rationality.
Multi-agent Systems and Collective
Rationality
Distributed AI systems model collective
bounded rationality, where multiple agents
with limited knowledge and computational
power coordinate or compete within shared
environments (Wooldridge, 2009). These
frameworks elucidate how effective
rationality emerges from localized
interactions.
Behavioral and Economic Implications
Decision Making Under Uncertainty
Computational bounded rationality models
illuminate the heuristics that underpin human
economic behavior, including framing effects,
loss aversion, and delayed gratification,
providing mechanistic explanations that
augment psychological theories (Kahneman,
2011). This promotes interdisciplinary
collaboration, improving behavioral
economics
Market Dynamics and Organizational
Decision Processes

Bounded rationality limits organizational
choices and market efficiency, highlighting
phenomena such as information asymmetry,
herd behavior, and institutional rigidity (Cyert
& March, 1963). Computational modeling
enables the simulation of intricate adaptive
systems that represent these dynamics
Challenges and Future Directions
Although computational models enhance our
grasp of effective rationality, obstacles persist
in matching model complexity with
interpretability, adapting to real-world issues,
and incorporating diverse cognitive processes.
Future research objectives should focus on
developing benchmark datasets that mirror
cognitively realistic constraints, improving
human-AI interaction systems to facilitate
bounded rational decision-making, and
designing hybrid models that combine
symbolic reasoning with sub-symbolic
learning
Discussion
This review synthesizes the theory of bounded
rationality and the practical advances enabled
by computational intelligence. By combining
these areas, decision-making research shifts
from focusing only on ideal scenarios to
exploring how people and machines actually
make choices when faced with real-world
limits. Here, I discuss what this means, the
trade-offs involved, and the wider impact for
both humans and AI.
6.1 The Paradigm Shift from Optimal to
Effective Rationality
The most significant contribution of
computational models is their ability to
operationalize Simon's and Rubinstein's ideas.
They provide a concrete answer to the
question: "What does it mean to be rational
when you cannot optimize?" The answer lies
in the concept of effective rationality—
achieving the best possible outcome given
finite time, knowledge, and computational
power. Models like metaheuristic search and
reinforcement learning are not merely
approximations of optimality; they are
instantiations of a different kind of rationality,
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one that is context-dependent and resource-
aware. This shifts the benchmark for success
from finding a global optimum to robustly
achieving satisfactory results across a wide
range of scenarios, a criterion that often better
matches real-world success.
6.2 The Dual Challenge of Fidelity and
Scalability
A key challenge in this area is finding the
right balance between models that closely
reflect human thinking and those that can
handle large, complex problems. Simple
heuristics, such as the 'fast and frugal' rules
from Gigerenzer and Todd (1999), are easy to
understand and align with some human
behaviors, but they may not adapt well to
complex situations. On the other hand,
advanced machine learning methods, such as
deep reinforcement learning, can outperform
humans in certain tasks; however, their
decision-making is often difficult to explain.
Moving forward, the field will likely focus on
hybrid models that combine the clarity and
human-like reasoning of symbolic approaches
with the flexibility of machine learning. This
way, we can build systems that not only work
well but are also understandable and
trustworthy.
6.3 Implications for the Principle of
Rationality in AI and Economics
Advances in computational bounded
rationality are transforming our understanding
of intelligence in AI. Rather than aiming for
one perfect form of intelligence, this view
sees intelligence as having many sides,
shaped by the environment and the resources
available. This matches the idea of ecological
rationality, where a strategy's value depends
on the setting in which it is used.
In economics, these models provide a much-
needed micro-foundation for behavioral
phenomena. Rather than treating biases and
heuristics as mere deviations from rationality,
computational models can show how these
behaviors emerge as adaptive responses to
computational constraints. For instance, loss
aversion in Prospect Theory can be reframed

as a risk-management heuristic that is
effective in environments where losses are
more costly to recover from than equivalent
gains are to build upon. This provides a
mechanistic, rather than just a descriptive,
account of economic behavior.
6.4 Ethical and Practical Considerations
for Autonomous Systems
As more autonomous AI systems are
deployed in areas such as finance, healthcare,
and transportation, it is crucial to design them
with real-world limitations in mind. No
system has unlimited computing power, so we
need to plan for these limits from the start.
This means making clear choices about how
to handle these boundaries.

1. Making Trade-offs Explicit: System
designers must make conscious
choices about how to allocate
computational budget between speed,
accuracy, and exploration.

2. Ensuring Robust Satisficing:
Systems should be engineered to
reliably find "good enough" solutions
that are robust to uncertainty, rather
than being fragile optimizers that fail
catastrophically when their idealized
assumptions are violated.

3. Aligning with Human Bounds: In
human-AI collaboration, the AI's
reasoning should be transparent and
comprehensible within the bounds of
human cognition to foster trust and
effective teamwork.

6.5 Limitations and Avenues for Future
Inquiry
While this field has made significant strides,
several challenges remain. There is a lack of
standardized benchmark environments for
evaluating bounded rational agents that
accurately reflect the resource constraints and
complexities of real-world decision-making.
Furthermore, most current models focus on a
single agent or a homogeneous group; more
research is needed on heterogeneous multi-
agent systems where agents with different



Available Online:

2025; 1-1 | 32-36

P a g e 36 |

computational capabilities, goals, and
cognitive architectures interact. Finally,
bridging the gap between the neural
implementation of cognitive control (e.g.,
O'Reilly & Frank, 2006) and abstract
computational models remains a fertile
ground for interdisciplinary research.
Conclusion
Computational intelligence provides robust
methods to grasp and improve effective
rationality within the limits of bounded
rationality. Through the incorporation of
algorithmic estimates, learning processes, and
interactions among multiple agents,
researchers can create decision-making
models that better reflect human cognitive
abilities. This review highlights the
importance of multidisciplinary approaches to
progress economic theory, artificial
intelligence, and behavioral science,
facilitating the creation of flexible, rational
agents capable of operating in complex,
uncertain environments
References
Cyert, R. M., & March, J. G. (1963). A
behavioral theory of the firm. Prentice-Hall.
Kahneman, D. (2011). Thinking, fast and slow.
Farrar, Straus and Giroux.
Rubinstein, A. (1986). Finite automata play
the repeated prisoner’s dilemma. Journal of
Economic Theory, 39(1), 83–96.
Simon, H. A. (1957). Models of man: Social
and rational. Wiley.
Russell, S., & Norvig, P. (2021). Artificial
Intelligence: A modern approach (4th ed.).
Pearson.
Sutton, R. S., & Barto, A. G. (2018).
Reinforcement learning: An introduction (2nd
ed.). MIT Press.
Wooldridge, M. (2009). An introduction to
multiagent systems (2nd ed.). Wiley.
Ainslie, G. (1992). Picoeconomics: The
Strategic Interaction of Successive
Motivational States Within the Person.
Cambridge University Press.

Gigerenzer, G., & Todd, P. M. (1999). Simple
Heuristics That Make Us Smart. Oxford
University Press.
Evans, J. St. B., & Stanovich, K. E. (2013).
Dual-process theories of higher cognition:
Advancing the debate. Perspectives on
Psychological Science, 8(3), 223–241.
Simon, H. A. (1990). Invariants of human
behavior. Annual Review of Psychology, 41(1),
1–20.
Boden, M. (2017). AI: Its Nature and Future.
Oxford University Press.
Newell, A., & Simon, H. A. (1972). Human
Problem Solving. Prentice Hall.
Lou, Y., & Kadous, M. (2010). Learning
bounded-rationality strategies in repeated
games. In Proceedings of AAMAS 2010.
Lieder, F., & Griffiths, T. L. (2020).
Resource-rational analysis: Understanding
human cognition as the optimal use of limited
computational resources. Behavioral and
Brain Sciences, 43.
Goel, V., & Dolan, R. J. (2004). The
functional neuroanatomy of deductive and
inductive reasoning. Brain Research, 654(1),
15–28.
Gigerenzer, G. (2008). Rationality for Mortals:
How People Cope with Uncertainty. Oxford
University Press.
Chater, N., & Oaksford, M. (2006). The
probabilistic mind: Prospects for Bayesian
cognitive science. Oxford University Press.
Tsang, E., & Lai, J. (2014). Agent-based
computational economics: An introduction.
Springer.
McCarthy, J. (2007). What is Artificial
Intelligence? Stanford Encyclopedia of
Philosophy.
O'Reilly, R., & Frank, M. (2006). Making
working memory work: A computational
model of learning in the prefrontal cortex and
basal ganglia. Neural Computation, 18(2),
283–328.
Sanfey, A. G. (2007). Social decision-making:
Insights from game theory and neuroscience.
Science, 318(5850), 598–602.


	Introduction
	Herbert Simon and Satisficing
	Heuristic and Metaheuristic Search Algorithms
	Multi-agent Systems and Collective Rationality
	Behavioral and Economic Implications
	Decision Making Under Uncertainty
	Challenges and Future Directions
	Discussion

	Conclusion
	References

