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Abstract: The integration of serverless computing with edge environments introduces a
paradigm of highly distributed, low-latency processing. However, orchestrating complex
serverless workflows across a heterogeneous continuum of resource-constrained edge devices
and powerful cloud nodes presents significant challenges in latency, state synchronization, and
fault tolerance. Existing orchestration systems, often designed for homogeneous cloud
environments, struggle with the inherent network instability and resource asymmetry of edge-
cloud topologies. This paper presents FlowMesh, a dynamic service mesh architecture
specifically designed for decentralized serverless workflow orchestration. FlowMesh introduces
a novel, lightweight control plane that embeds orchestration logic directly within a mesh of
sidecar proxies co-located with function runtime environments. This design enables intelligent,
context-aware routing and state management without a centralized bottleneck. Key innovations
include a distributed consensus protocol for fault-tolerant state management, a latency-aware
function placement scheduler, and a transparent checkpointing mechanism for seamless fault
recovery across stateful workflows. We evaluate FlowMesh against state-of-the-art systems, such
as FaaSFlow and AWS Step Functions, in a simulated edge-cloud testbed. Results demonstrate
that FlowMesh reduces end-to-end workflow latency by up to 40% in edge scenarios and
improves fault recovery success rate by 65% compared to cloud-centric alternatives, while
maintaining minimal overhead. This work provides a blueprint for building robust, high-
performance serverless platforms that truly span the edge-to-cloud continuum.

Keywords: Serverless Computing, Edge-Cloud Continuum, Service Mesh, Workflow
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1. Introduction ever-changing, resource-limited nature of
edge scenarios (Aslanpour et al., 2021). As a

Th id proliferati f Internet of Thi o
© [apic profileration ot “nternet o nes result, advanced applications now leverage

(IoT) devices and demands from real-time
applications like self-driving cars and
augmented reality have driven significant
adoption of edge computing. Processing
information near its origin helps minimize
both latency and network bandwidth usage.
The serverless model, characterized by its
event-driven nature, automatic scaling, and
pay-as-you-go pricing, ideally matches the
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serverless workflows, which orchestrate the
order and dependencies among numerous
serverless functions.

However, a significant gap exists between the
vision of a seamless edge-cloud continuum,
where workloads can freely migrate between
the edge and cloud based on requirements,
and the reality of existing orchestration
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technologies. Current serverless workflow
systems (e.g., AWS Step Functions, Azure
Durable Functions and research prototypes
like FaaSFlow) are predominantly designed
for centralized, high-bandwidth cloud
environments (Li et al, 2022). When
deployed in a geo-distributed edge-cloud

setting, these systems face three core
challenges:
1. High and Variable Latency:

Communication between a centralized
orchestrator in the cloud and function
invocations at the edge introduces
significant and unpredictable latency,
breaking the low-latency promise of
edge computing.

2. Network Instability: Edge networks
are prone to partitions and intermittent
connectivity, =~ which can cause
orchestration to fail if it relies on
constant communication with a central
coordinator.

3. Resource Asymmetry and Fault
Tolerance: Resource-constrained
edge nodes are more likely to fail than
robust  cloud servers.  Stateful
workflows that require durability are
particularly vulnerable if their state is
managed centrally, far from the
execution point.

To address these challenges, we propose
FlowMesh, a novel architecture that
decentralizes workflow orchestration by
leveraging the principles of a service mesh.
In FlowMesh, the orchestration logic is
embedded within a network of lightweight
sidecar proxies that form a smart data plane.
This design eliminates the single point of
failure and performance bottleneck of a
centralized orchestrator.

The primary contributions of this paper are:

e The design of FlowMesh is a dynamic
service  mesh  architecture  for
decentralizing serverless workflow
orchestration across heterogeneous
edge and cloud resources.
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e A novel distributed state protocol
that ensures consistency and enables
fault recovery without a central state
manager.

e A latency-aware scheduling
algorithm that dynamically places
functions on optimal nodes within the
continuum based on real-time network
conditions and resource availability.

e A comprehensive evaluation
demonstrating that FlowMesh
significantly  outperforms existing

centralized systems in terms of latency
and fault tolerance in edge-cloud
scenarios.

2. Literature Review

Serverless Workflow Orchestration. The
challenge of coordinating functions in
serverless applications has led to the
development of various orchestration models.
Commercial platforms, such as AWS Step
Functions (Amazon, 2023) and Azure Logic
Apps (Microsoft, 2023), utilize state machine-
based models to define workflows. Academic
research has focused on optimizing these
workflows, particularly using Directed
Acyclic Graphs (DAGs). For instance,
FaaSFlow (Li et al.,, 2022) introduces a
worker-side scheduling pattern that groups
functions to exploit data locality and in-
memory caching, significantly reducing 1/O
overhead in cloud environments. Xanadu
(Daw et al., 2020) addresses the cold start
problem in function chains through
speculative provisioning. However, these
systems assume a relatively stable, high-
bandwidth cloud backend and are not
designed for the challenges of the edge.

Edge Computing and Serverless. The
convergence of edge and serverless
computing is an active area of research.
Sledge (Lyu et al., 2022) examines the
application of WebAssembly for efficient
DAG support at the edge, with a focus on
lightweight runtimes. Other works, such as
DPE (Deng et al., 2022), investigate data
placement and function embedding strategies
91
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for serverless edge computing. These studies
highlight the importance of data locality and
lightweight execution, but often do not fully
address the placement of orchestration logic,
which remains a potential bottleneck.

Service Meshes and Distributed Systems.
Service meshes, such as Istio and Linkerd,
have gained popularity in microservices
architectures for handling service-to-service
communication, resilience, and observability
through a sidecar proxy model (Butt et al.,
2022). The core idea is to decouple
application logic from network functions.
FlowMesh adapts this concept for serverless
workflows, using the sidecar to encapsulate
not just communication but also workflow
state management and decision logic. This
aligns with the principles of distributed

systems, as seen in frameworks like Apache
Kafka Streams or temporal workflows, but
applies them to the ephemeral, event-driven
context of serverless functions.

FlowMesh distinguishes itself by specifically
targeting the decentralization of the
orchestration layer, a problem that has not yet
been fully addressed by existing edge-
serverless or service mesh literature.

3. The FlowMesh Architecture

FlowMesh's core innovation is decomposing
the monolithic orchestrator into a distributed
set of collaborating components integrated via
a service mesh. The architecture consists of
three main layers: the Data Plane (Sidecar
Proxies), the Control Plane (Mesh
Controllers), and the Management Plane
(Orchestrator API).

*Figure 1: High-level overview of the FlowMesh architecture, showing the management plane,
the decentralized control plane, and the data plane with sidecar proxies adjacent to function

runtimes on edge and cloud nodes.
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3.1. Data Plane: The Smart Sidecar Proxy

Each serverless function runtime (e.g., a
container or microVM) is paired with a
lightweight FlowMesh Sidecar Proxy. This
proxy is responsible for:

1. Local Orchestration: Executing the
parts of the workflow DAG that
pertain to its adjacent function. It
decides which function to invoke next
based on the current function's output
and the workflow definition.

2. State Management: Maintaining a
lightweight  checkpoint  of  the
workflow's state relevant to its node.

3. Communication: Handling all
communication with other sidecar
proxies via an efficient, mesh-wide
gossip protocol.

4. Health Checking: Monitoring the
health of its adjacent function and
reporting to the control plane.

By embedding logic in the sidecar, decisions
are made close to the data, drastically
reducing the round-trip time to a central
orchestrator.

3.2. Control
Controllers

Plane: Distributed Mesh

The control plane consists of a set of mesh
controllers distributed across the edge-cloud
continuum. Unlike a single central controller,
these instances are lightweight and can run on
edge gateways or cloud nodes. They are
responsible for:

1. Service Discovery: Keeping a
distributed catalog of available
functions and their locations.

2. Policy  Enforcement:  Applying
routing rules, security policies, and
rate limits.

Available Online:

3. Dynamic Scheduling: Making initial
and runtime function placement
decisions based on a global view of
resource availability and network
latency (see Section 3.3).

4. Consensus Management: Using a
consensus protocol (e.g., a lightweight
variant of Raft) to maintain a
consistent view of the global
workflow state across controllers.

3.3. Management Plane: Orchestrator API

This is the single entry point for users to
define, deploy, and monitor workflows. It
compiles high-level workflow definitions (e.g.,
written in a DSL or YAML) into a
configuration that is disseminated to the
control and data planes.

4. Core Algorithms and Mechanisms
4.1. Latency-Aware Function Placement

FlowMesh uses a scheduling algorithm that
decides where to place a function when it is
invoked. The goal is to minimize end-to-end
workflow latency. The algorithm considers:

1. Data Locality: Preferring nodes that
already have the required input data.

2. Node Resources: CPU, memory, and
GPU availability of potential target
nodes.

3. Network Proximity: The real-time
latency between the current function's
node and potential target nodes.

The decision is modeled as an optimization
problem and solved efficiently using a
heuristic-based approach that can run on the
distributed Mesh Controllers.

*Figure 2: A flowchart describing the steps of
the latency-aware function placement
algorithm.*
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FlowMesh Latency-A\évtaae Scheduling Process
a

Receive Workflow
Definition

Identify Functions and Data Dependencies

Query Resource for Each
Placement Option

Select Notency with Lowest Expected Latency

Assign Function with Lowest
Selected Node No

4.2. Distributed State Synchronization
Protocol
For  stateful  workflows,  maintaining

consistency is critical. FlowMesh employs a
distributed checkpointing protocol. When a
function completes, its sidecar proxy
checkpoints the function's output and the
current workflow state. This checkpoint is
propagated to a configurable number of peer
sidecars and Mesh Controllers. If a node fails,
the workflow can be resumed from the last
consistent checkpoint by a different node,
ensuring fault tolerance without a central state
database.

4.3. Fault-Tolerant Workflow Recovery

Available Online:

Next Function?
State

The
management and the distributed control plane
enables robust recovery. If a sidecar detects
that its adjacent function has failed, it can
immediately signal the control plane. The

combination of sidecar-based state

control plane then wuses the distributed
checkpoints to reassign the failed function's
task to a healthy node, seamlessly resuming
the workflow from the last saved state.

5. Evaluation

We implemented a prototype of FlowMesh
using Go and the Envoy proxy framework.
We evaluated its performance against two
baselines: AWS Step Functions (as a
representative cloud-centric orchestrator) and

12|
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FaaSFlow (as a state-of-the-art research
system optimized for cloud workflows).

Testbed: We simulated an edge-cloud
environment using Google Cloud Platform.
The "cloud" consisted of high-performance
VMs (n2-standard-8). The "edge" was
simulated using a cluster of lower-powered
VMs (e2-medium) in a different region, with
bandwidth and latency throttled between
regions to mimic real-world WAN conditions.

. Image

. IoT Data Analytics:

Processing Pipeline: A
sequential workflow involving image
download, thumbnail generation, and
object detection.

A parallel
workflow that aggregates and analyzes
sensor data from multiple sources.

. E-commerce Checkout: A stateful

workflow involving user
authentication,  inventory  check,
payment processing, and order
confirmation.

System Performance Comparison

Workloads: We wused three benchmark
workflows:
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Results:

1. Latency: FlowMesh reduced the end-
to-end latency of the Image Processing
pipeline by 40% and the IoT
Analytics pipeline by 32% compared
to AWS Step Functions, by keeping
data flow and orchestration decisions
within the edge network. FaaSFlow
also performed well in the cloud but
suffered from high Ilatency when
functions were placed at the edge due
to communication with its central
scheduler.

Available Online:
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2. Fault Recovery: We injected node

failures during the E-commerce
Checkout  workflow.  FlowMesh
successfully recovered and completed
92% of workflows, compared to 65%
for FaaSFlow and 27% for AWS Step
Functions, which struggled with state
reconciliation after an edge node
failure.

. Overhead: The resource overhead of

the FlowMesh sidecar proxy was
measured to be less than 5% of CPU
and memory on an e2-medium VM,
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demonstrating its suitability for
resource-constrained edge devices.
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6. Discussion

The experimental results indicate that
FlowMesh effectively addresses the primary
challenges associated with orchestrating
serverless workflows across the edge-cloud
continuum. A reduction in end-to-end latency
of up to 40% compared to cloud-centric
systems supports the hypothesis that
decentralizing orchestration logic is essential
for edge environments. This improvement is
primarily due to two architectural decisions:
embedding orchestration logic within sidecar
proxies, which removes the need for round-
trip communication to a central coordinator,
and implementing a latency-aware scheduler

Figure 3: Bar charts comparing the end-to-end
latency (a) and fault recovery success rate (b)
of FlowMesh against baseline systems for the
three benchmark workflows.
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that optimizes function placement based on
real-time network conditions.

6.1 Interpretation of Key Results

The superior performance of FlowMesh in
fault recovery scenarios, with a 92% success
rate compared to 65% for FaaSFlow,
highlights the effectiveness of the distributed
state  synchronization protocol. Whereas
FaaSFlow and similar systems depend on

centralized state managers, FlowMesh
propagates checkpoints across multiple
sidecars and controllers, resulting in a

resilient, distributed state ledger. This design
is particularly advantageous in edge
environments where node failures are
frequent and network partitions may isolate a

Page 14|
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central state from

functions.

manager executing

The minimal overhead of the FlowMesh
sidecar proxy, consuming less than 5% of
resources, addresses a common concern
regarding service mesh architectures in
resource-constrained  environments.  This
efficiency enables deployment across a broad
spectrum of edge devices, including both
powerful gateways and limited single-board
computers.

6.2 Comparison with Existing Work

Our results poThe results position FlowMesh
as a complementary advancement rather than
a direct replacement for systems such as
FaaSFlow. Although FaaSFlow performs well
in homogeneous cloud environments through
worker-side scheduling and data locality
optimizations, its centralized orchestration
model is less effective in distributed edge
topologies. In contrast, FlowMesh extends
these optimization principles across federated
infrastructures by  decentralizing  the
orchestration logic.ture also advances the
application of service mesh patterns. While
traditional service meshes like Istio focus on
communication resilience between
microservices, FlowMesh demonstrates that
the sidecar proxy model can be effectively
extended to manage complex, stateful
workflow logic. This represents a significant
evolution of the service mesh concept from a

communication fabric to a distributed
execution engine.

6.3 Limitations and Practical
ConsiderationsDespite promising results,

FlowMesh introduces several challenges that
require  consideration. The  distributed
consensus protocol, although fault-tolerant,
increases system complexity and may
introduce latency in wide-area deployments
with  significant  network  variability.
Furthermore, the current evaluation was
conducted in a simulated edge environment.
Real-world deployments may encounter
challenges not represented in the testbed,
including extreme resource constraints on loT
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devices or more complex network failure
modes.s.

Another consideration isAnother
consideration is the 'state drift" problem
inherent in distributed systems. Although the
checkpointing mechanism ensures fault
tolerance, maintaining strong consistency
across all  workflow  instances in
geographically distributed systems remains
challenging. The current implementation
prioritizes availability and partition tolerance
over strong consistency, consistent with the
CAP theorem, which is suitable for many
edge applications but may not address all use
cases.FlowMesh  also  requires  further
refinement. Distributing orchestration logic
across potentially untrusted edge nodes
introduces new attack vectors that centralized
systems avoid. Future work must address
secure multi-tenancy, function isolation, and
attestation of edge node integrity.

6.4 Broader Implications

The FlowMeshThe FlowMesh architecture
has implications beyond serverless workflow
orchestration. Embedding intelligence into a
distributed data plane may inspire similar
approaches for other distributed systems
challenges, including federated learning
coordination  and  distributed  stream
processing. The demonstrated principles of
decentralized control, latency-aware
scheduling, and distributed state management
offer a blueprint for constructing responsive,
resilient systems across heterogeneous
infrastructures.dustry perspective, FlowMesh
offers a practical path toward realizing the
vision of true edge-cloud continuum
computing. By addressing the fundamental
orchestration bottlenecks that have limited
serverless adoption in edge scenarios, it
enables new classes of applications that
require both low-latency edge processing and
the scalability of cloud resources.

7. Discussion

This study shows that the PQC-IMC
architecture ~ uses  memristor  crossbar
parallelism to speed up polynomial

15|
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multiplication, which is key for lattice-based
post-quantum cryptography. Achieving a 4.1x
speedup over software and much lower
energy use highlights how IMC can address
major challenges in traditional von Neumann
systems, especially the memory wall caused
by too much data movement.

Although the ASIC accelerator has lower
latency, PQC-IMC stands out for its strong
energy efficiency and lower Energy-Delay
Product, making it a good fit for energy-
limited settings like IoT and edge devices.
This research builds on earlier work with
memristor-based in-memory computing for
neural networks and symmetric cryptography,
and now brings these advantages to the more
demanding area of post-quantum
cryptography.

However, there are still practical challenges to
address before this technology can be widely
used. Because memristor computations are
analog, issues like device variability, noise,
and limited precision can affect cryptographic
accuracy and reliability if not carefully
managed. Also, the energy and latency costs
of ADC/DAC interfaces and other digital
circuits are significant and should be
considered in future ASIC evaluations to get a
complete picture of system performance.

This study used behavioral memristor models
and FPGA-based emulation for its evaluation.
Future research should test physical
memristor crossbar prototypes and silicon
versions to confirm results and study design
tradeoffs. It is also important to address side-
channel resistance and hardware security,
especially because of the analog nature of the
computations.

In summary, PQC-IMC is a promising new
architecture that can boost throughput and
lower energy use for post-quantum
cryptography on edge devices. It broadens the
use of memristor in-memory computing and
points to important research areas like cross-
layer design, device modeling, and secure
hardware, all of which are needed to make

Available Online:

practical, quantum-safe cryptography possible
for new types of computing.

8. Conclusion and Future Work

This paper introduced FlowMesh, a dynamic
service mesh architecture for orchestrating
serverless workflows across the edge-cloud
continuum. By decentralizing orchestration
logic into a network of sidecar proxies,
FlowMesh addresses the critical challenges of
latency, fault tolerance, and network
instability that plague centralized systems in
distributed environments. Our evaluation
demonstrates significant improvements in
performance and resilience.

Future work will focus on several areas. First,
we plan to explore more advanced scheduling
algorithms that incorporate energy
consumption and cost metrics. Second, we
intend to integrate support for heterogeneous
hardware accelerators (e.g., GPUs, TPUs) at
the edge. Finally, we will investigate security
models for  multi-tenant FlowMesh
deployments in untrusted edge environments.

FlowMesh represents a step towards a future
where serverless computing can truly leverage
the full potential of the edge-cloud continuum,
enabling a new class of responsive, robust,
and distributed applications.
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