

The Quest for First Principles: A Critical Examination of B.M. Mednikov's Axiomatic Foundation for Theoretical Biology

Haong Wan^{1*}

Abstract: The goal of creating a unified theoretical biology, similar to the solid foundations seen in physics, is still one of the biggest challenges in life sciences. Because biological systems are so complex and variable, some doubt whether this is even possible. This paper looks at a major effort to address this challenge: the axiomatic system developed by Russian biologist Boris Mikhailovich Mednikov. We place Mednikov's work in the larger history of searching for basic principles in biology and examine his five main axioms, which describe life as an energy-dependent process of maintaining and reproducing specific structures, with the genome at its core. We discuss the philosophical basis of his system, pointing out its strengths in connecting genetics, evolution, and development. We also consider its weaknesses, such as possible reductionism and how it handles adaptation. In the end, we argue that even if a fully formalized axiomatic biology is out of reach, Mednikov's work offers a valuable framework that still sparks debate about the basic laws of living systems.

Keywords: *theoretical biology, axiomatic method, B.M. Mednikov, philosophy of biology, reductionism, genetic program, evolutionary theory*

¹Independent Scholar

1. Introduction

For decades, biologists and philosophers of science have grappled with a fundamental question: can the science of life be structured as a coherent, deductive system? Unlike physics, which boasts powerful theoretical frameworks from Newtonian mechanics to quantum field theory, biology often presents as a vast, fragmented collection of empirical facts, models, and domain-specific theories (Mayr, 2004). The quest for a "theoretical biology" is the quest for a set of unifying principles from which the immense diversity and particularity of biological phenomena can be logically derived (Wolkenhauer & Hofmeyr, 2007).

Various models have been proposed to achieve this unification. Descriptive models, while rich in detail, lack predictive power and deductive rigor. Hypothetico-deductive models, central to the scientific method, operate on a smaller scale, testing specific hypotheses rather than constructing an overarching edifice. The most rigorous approach, and the subject of this review, is the axiomatic method. Pioneered in mathematics with Euclid's Elements, this method begins with a set of self-evident truths (axioms) from which all other statements (theorems) are logically deduced (Bourbaki, 1950). Its application to biology, however, is fraught with difficulty. Biological "truths" are rarely

self-evident; they are contingent, probabilistic, and shaped by evolutionary history.

In this context, Boris M. Mednikov, a well-known Russian biologist, made a clear and organized effort to build an axiomatic foundation for theoretical biology. Although his work is not widely recognized in the West, it marks an important point in the philosophy of biology. This paper takes a close look at Mednikov's system. First, we examine his definition of life, which is central to his approach. Next, we outline and analyze his five axioms, considering how logical, supported, and broad they are. We then discuss the philosophical issues raised by his system, especially concerns about genetic reductionism and adaptation. Finally, we reflect on the impact of Mednikov's work and its importance for modern systems and synthetic biology.

2. Mednikov's Foundational Concept

Any axiomatic system must begin with clearly defined primitives. For biology, the most fundamental primitive is the concept of "life" itself—a notion that has eluded a consensus definition. Rejecting vague vitalistic notions as well as the classical definition by Friedrich Engels, Mednikov proposed a precise, functionalist definition:

Life is the active, energy-consuming maintenance and reproduction of a specific structure" (Mednikov, 2005, p. 339).

This definition is deceptively simple yet carries significant theoretical weight. Let us unpack its components:

Active... maintenance and reproduction": This emphasizes that life is a process, not a static state. It is a dynamic activity of preserving and propagating organization against the universal tendency toward entropy.

Energy-consuming: This explicitly links the biological process to the laws of thermodynamics. Living systems are non-equilibrium systems that require a constant flux of energy to sustain their order.

Specific structure: This refers to the highly organized, information-rich configuration that characterizes living matter. For Mednikov, the quintessential "specific structure" is the genetic program, the genome.

This definition connects the chemical and informational aspects of life. It lays the groundwork for an axiomatic system based in molecular biology that also aims to explain more complex levels of biological organization.

3. The Five Axioms of Biology

Mednikov derived a system of five axioms intended to be self-evident, necessary, sufficient, and logically independent. He argued that all biological phenomena, from enzyme kinetics to ecosystem dynamics, could be derived from these foundational principles.

Axiom 1: The Phenotype-Genotype Dichotomy.

Statement: "All living organisms must be a unity of phenotype and a program for its construction (genotype), which is inherited from generation to generation."

Analysis: This axiom formalizes the central dogma of molecular biology in its broadest sense. It establishes the fundamental duality of the biological organism: the genotype as the encoded information and the phenotype as the expressed, functional manifestation. This is perhaps the least contentious of the axioms, as it captures a universal feature of known life. It provides the logical basis for heredity and variation.

Axiom 2: Matrix-Based Replication.

Statement: "The genetic program is synthesized by a matrix mechanism. The matrix for constructing the gene of a future generation is the gene of a pre-existing generation."

Analysis: This axiom specifies the mechanism of inheritance. The "matrix mechanism" is a direct reference to the template-directed synthesis of DNA and RNA.

It underscores the fidelity and linearity of information transfer across generations, which is essential for the stability of species. This axiom roots biology in the concrete chemistry of nucleic acids, moving beyond abstract concepts of inheritance.

Axiom 3: Stochastic and Non-Directed Variation.

Statement: "In the process of transmission from generation to generation, genetic programs change randomly and in a non-directed manner, and only by chance are these changes adaptive."

Analysis: This is Mednikov's strong commitment to the Neo-Darwinian modern synthesis. It is a direct rebuttal of Lamarckian or orthogenetic views of evolution. The axiom posits that mutation is the ultimate source of variation and that it is blind to the needs of the organism. Adaptation is thus a product of selection acting on random variation, not a directed process. This axiom has been a subject of intense philosophical debate, though it remains a core tenet of mainstream evolutionary theory (Lenski & Mittler, 1993).

Axiom 4: The Principle of Amplification.

Statement: "Changes in genetic material, occurring at the quantum level, are amplified to the level of the macroscopic body during the realization of the phenotype. This principle governs the possibility of structural complexity in evolution, i.e., so-called morphophysiological progress."

Analysis: This is one of Mednikov's most original contributions. It addresses the scale-bridging problem in biology: how minute, subatomic alterations in DNA (e.g., a point mutation) can lead to macroscopic, organismal consequences. The "amplification" occurs through the complex, nonlinear cascades of gene regulation, development, and physiology. This axiom provides a theoretical link between molecular genetics and evolutionary morphology, suggesting a mechanism for the evolution of complexity.

Axiom 5: Natural Selection.

Statement: "The repeatedly amplified changes in genetic programs are subjected to selection by the conditions of the external environment."

Analysis: This axiom completes the evolutionary cycle. It states the principle of natural selection, identifying the environment as the filtering agent that differentially preserves the randomly generated, amplified variations. It is the final, necessary component to explain adaptation and diversification. While succinct, it encompasses the entire domain of evolutionary ecology.

4. Discussion

Mednikov's system brings together many ideas, but it also raises important questions from both philosophical and biological viewpoints.

4.1. The Charge of Genetic Reductionism

The most significant criticism is that Mednikov's axioms are, in essence, the axioms of molecular and evolutionary genetics, not of biology in its entirety. By placing the genome at the absolute center of his system, he risks committing a form of strong genetic reductionism (Zimmer, 2021). This framework struggles to adequately account for:

Emergent Properties: Phenomena such as consciousness, ecosystem dynamics, or social behavior are not easily derivable from genetic programs alone. They arise from complex interactions at higher levels of organization.

Epigenetics and Niche Construction: Modern biology increasingly recognizes that inheritance can be epigenetic and that organisms actively modify their own selective environments (Odling-Smee et al., 2003). Mednikov's system, focused on the random mutation of DNA and external environmental selection, has limited capacity to incorporate these more interactive and reciprocal models.

The Problem of the Phenotype: Axiom 1 establishes the phenotype but gives it a

passive role as a mere "construction" from the genotype. The rich, autonomous, and constraining properties of phenotypic organization itself are largely absent from the axiomatic foundation.

4.2. The Nature of Adaptation

Mednikov's third axiom presents a stark, "all-or-nothing" view of adaptation. By insisting that changes are only by chance adaptive, he dismisses any potential for weakly directed variation or non-random mutation processes, which remain topics of active research (Rosenberg & Queitsch, 2014). Furthermore, his definition of adaptation is purely externalistâ€”shaped solely by the environment. This overlooks the role of internal constraints, developmental biases, and the architecture of genetic networks in channeling evolutionary outcomes (Arthur, 2004).

4.3. The Axiomatic Method in a Historical Science

A more fundamental question is whether the axiomatic method, born of mathematics and theoretical physics, is appropriate for a historical science like biology. Physical laws are considered universal and timeless. Biological "laws," in contrast, are the products of a contingent evolutionary history. While Mednikov's axioms may accurately describe life as we know it on Earth, it is debatable whether they represent necessary truths for any possible life. They are, perhaps, powerful empirical generalizations rather than self-evident logical primitives.

5. Conclusion

Boris Mednikov's project to construct an axiomatic theoretical biology was both ambitious and, in its ultimate goal of a formal, deductive system, likely unattainable. The messy, hierarchical, and historically contingent nature of life resists such a neat encapsulation. However, to dismiss his work on these grounds would be to miss its profound value.

Mednikov's lasting impact is not that he gave the final answer, but that he started a serious discussion about the basic ideas in biology. His system offers a useful set of core principles that help explain many biological phenomena, from molecules to evolution. It brings together key ideas from 20th-century biology, such as the genetic code, random mutation, and natural selection.

In the contemporary context, his "Principle of Amplification" finds new resonance in systems biology, which seeks to understand precisely how molecular networks generate emergent phenotypes. Similarly, the quest for a definition of life remains central to astrobiology and synthetic biology. Mednikov's work stands as a classic, rigorous, and thought-provoking monument to the human desire to find order and first principles in the magnificent complexity of the living world. It challenges future generations to refine, critique, and build upon its foundations, keeping the dream of a unified theoretical biology alive.

References

- Arthur, W. (2004). *Biased embryos and evolution*. Cambridge University Press.
- Bourbaki, N. (1950). The architecture of mathematics. *The American Mathematical Monthly*, 57 (4), 221â€“232.
- Lenski, R. E., & Mittler, J. E. (1993). The directed mutation controversy and neo-Darwinism. *Science*, 259 (5092), 188â€“194.
- Mayr, E. (2004). *What makes biology unique?: Considerations on the autonomy of a scientific discipline*. Cambridge University Press.
- Mednikov, B. M. (2005). Axiomy biologii [Axioms of biology]. In *Izbrannye trudy* [Selected Works] (pp. 332â€“443). KMK.
- Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). *Niche construction: The neglected process in evolution*. Princeton University Press.

Rosenberg, S. M., & Queitsch, C. (2014). Combating evolution to fight disease. *Science* , 343 (6172), 1088â€“1089.

Wolkenhauer, O., & Hofmeyr, J. H. (2007). An abstract cell model that describes the self-organization of cell function in living systems. *Journal of Theoretical Biology* , 246 (3), 461â€“476.

Zimmer, C. (2021). She has her mother's laugh: The powers, perversions, and potential of heredity . Dutton.