

Exosomes: From Cellular Messengers to Pivotal Mediators of Disease Pathogenesis and Therapeutic Vectors

Weing Long*¹

Abstract: Exosomes, a subset of extracellular vesicles (EVs) with diameters ranging from 30 to 150 nanometers, were once considered mere cellular debris. However, over the past two decades, they have been recognized as fundamental mediators of intercellular communication. These lipid-bilayer-enclosed vesicles are generated through the endosomal pathway and carry a complex cargo of proteins, lipids, and nucleic acids (including DNA, mRNA, and non-coding RNAs) that reflects the physiological state of their cell of origin. Upon release into the extracellular space and subsequent uptake by recipient cells, exosomes can modulate a wide array of biological processes, including immune responses, neuronal communication, and tissue repair. This review comprehensively explores the biogenesis, cargo sorting, and release mechanisms of exosomes. We then delve into their multifaceted roles in both maintaining homeostasis and driving disease progression, with a particular focus on cancer (pro-tumorigenic signaling, metastasis, and drug resistance), neurodegenerative disorders (propagation of pathological proteins like α -synuclein and tau), and cardiovascular diseases. Furthermore, we discuss the dual nature of exosomes as both biomarkers for disease diagnosis and prognosis and as innovative therapeutic vehicles for targeted drug and nucleic acid delivery. Finally, we address the current challenges and future perspectives in the rapidly evolving field of exosome research, highlighting their immense potential in precision medicine.

Keywords: *Exosomes, Extracellular Vesicles, Intercellular Communication, Cancer Biomarkers, Neurodegenerative Diseases, Drug Delivery Systems, Exosome Biogenesis, MicroRNA*

¹Independent Scholar

1. Introduction

Intercellular communication is the cornerstone of multicellular life, enabling the coordination of complex physiological processes necessary for development, homeostasis, and response to injury. For decades, this communication was understood to occur primarily through direct cell-cell contact, the secretion of soluble factors like hormones and cytokines, or synaptic transmission. The discovery of extracellular vesicles (EVs) has fundamentally expanded this paradigm, introducing a novel mechanism

by which cells can exchange complex biomolecular information over both short and long distances (Thery et al., 2009).

Among the various classes of EVs, exosomes have garnered significant attention due to their unique biogenesis and potent biological activities. First described in the 1980s as vesicles released during reticulocyte maturation (Harding et al., 1983; Pan & Johnstone, 1983), exosomes were initially thought to be a mechanism for discarding obsolete cellular components. It is now

unequivocally established that exosomes are not cellular "wastebaskets" but are sophisticated, purposefully loaded nanoscale messengers. They are formed through the inward budding of the limiting membrane of early endosomes, creating intraluminal vesicles (ILVs) within larger multivesicular bodies (MVBs). These MVBs subsequently fuse with the plasma membrane, releasing the ILVs into the extracellular environment as exosomes (Kowal et al., 2014).

The cargo of an exosome is a molecular snapshot of its parent cell, comprising a selective repertoire of proteins (e.g., tetraspanins CD9, CD63, CD81, heat shock proteins, and antigen-presenting molecules), lipids (cholesterol, sphingomyelin, ceramide), and nucleic acids (genomic DNA, mRNAs, and various non-coding RNAs like miRNAs, lncRNAs, and circRNAs). This cargo is not random; it is meticulously sorted through mechanisms involving the Endosomal Sorting Complex Required for Transport (ESCRT) machinery and ESCRT-independent pathways (e.g., ceramide-dependent budding) (Colombo et al., 2014).

The functional impact of exosomes is realized upon their uptake by recipient cells via endocytosis, phagocytosis, or direct membrane fusion. This delivery mechanism allows for the direct transfer of functional proteins and, most notably, genetic information. For instance, exosomal mRNA can be translated into protein in the recipient cell, and exosomal microRNAs (miRNAs) can directly regulate gene expression by silencing target mRNAs (Valadi et al., 2007). This capacity to reprogram recipient cell behavior makes exosomes powerful regulators of both physiological and pathological states.

This review article aims to provide a comprehensive overview of the current understanding of exosomes. We will first detail the molecular mechanisms governing their biogenesis and cargo sorting. We will then explore their critical roles in normal physiology before delving deeply into their emerging functions as key drivers of disease

progression in oncology, neurology, and cardiology. Finally, we will discuss the translational potential of exosomes, focusing on their utility as diagnostic biomarkers and their promise as next-generation therapeutic nanocarriers.

2. Biogenesis and Molecular Composition of Exosomes

The life cycle of an exosome is a tightly regulated, multi-step process that can be divided into three main phases: (1) the formation of ILVs within MVBs, (2) the trafficking and fusion of MVBs with the plasma membrane, and (3) the release and eventual uptake by a target cell.

2.1. The Endosomal Pathway and MVB Formation

The journey of an exosome begins at the early endosome, a sorting station for internalized cargo from the plasma membrane. As the early endosome matures into a late endosome, its membrane invaginates inward, capturing cytosolic components—proteins, lipids, and nucleic acids—within nascent ILVs. This process results in the formation of a MVB, a cytoplasmic organelle packed with dozens or even hundreds of ILVs. The fate of the MVB is then determined: it can either fuse with lysosomes for degradation of its contents, or it can traffic to and fuse with the plasma membrane, releasing the ILVs into the extracellular space as exosomes (Figure 1).

2.2. Mechanisms of Cargo Sorting and ILV Biogenesis

The sorting of specific cargo into ILVs is a highly selective process, primarily governed by two interconnected mechanisms:

The ESCRT-Dependent Pathway: The ESCRT machinery is a complex of four protein complexes (ESCRT-0, -I, -II, and -III) and associated proteins (e.g., VPS4, ALIX). ESCRT-0 recognizes and clusters ubiquitinated cargo proteins on the endosomal membrane. ESCRT-I and -II then initiate membrane deformation, while ESCRT-III drives the scission and release of the ILV into

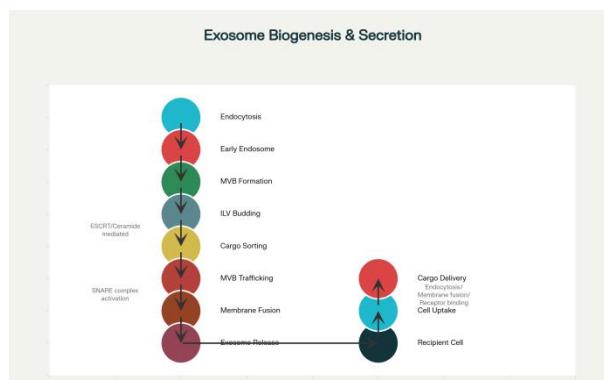
the MVB lumen. Finally, VPS4 recycles the ESCRT components. Key exosomal markers like the tetraspanins (CD63, CD81) and ALIX are often associated with this pathway (Henne et al., 2011).

The ESCRT-Independent Pathway: Several ESCRT-independent mechanisms have been identified. The most well-characterized involves the lipid ceramide. The enzyme neutral sphingomyelinase 2 (nSMase2) hydrolyzes sphingomyelin in the endosomal membrane to generate ceramide, which has a cone-shaped structure that promotes membrane curvature and facilitates ILV budding (Trajkovic et al., 2008). Other ESCRT-independent mechanisms involve tetraspanin microdomains and the raft-based lipid sorting.

The specific loading of nucleic acids, particularly miRNAs, is an area of intense research. RNA-binding proteins (RBPs) such as hnRNPA2B1 and Argonaute 2 (Ago2) have been implicated in the selective packaging of miRNAs into exosomes, often through the recognition of specific sequence motifs (exomotifs) on the RNA (Villarroya-Beltri et al., 2013).

2.3. Molecular Composition of Exosomes

The molecular signature of exosomes is diverse and cell-type-specific, but several components are commonly enriched and serve as canonical markers (Figure 2).


Proteins: Tetraspanins (CD9, CD63, CD81) are nearly universal exosome markers. Other common proteins include heat shock proteins (Hsp70, Hsp90), proteins involved in MVB biogenesis (Alix, TSG101), flotillin, and integrins. The specific protein cargo, however, can vary dramatically; for example, exosomes from antigen-presenting cells are enriched with Major Histocompatibility Complex (MHC) molecules.

Lipids: The exosomal membrane is enriched in cholesterol, sphingomyelin, ceramide, and phosphatidylserine compared to the plasma

membrane. This unique lipid composition contributes to their stability in the extracellular environment and may facilitate membrane fusion with target cells.

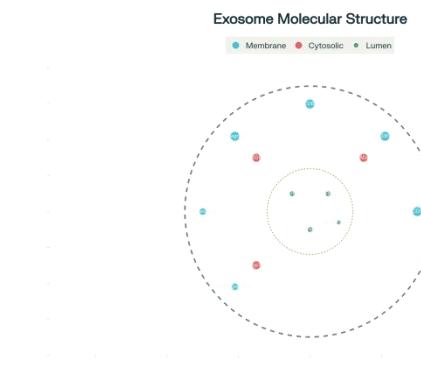

Nucleic Acids: Exosomes carry a diverse array of genetic material, including fragmented DNA, mRNAs, and a wide spectrum of non-coding RNAs (miRNAs, piRNAs, lncRNAs, circRNAs). The miRNA profile of exosomes is often distinct from that of the parent cell cytoplasm, underscoring the selectivity of the packaging process.

Figure 1. Schematic of Exosome Biogenesis and Secretion.

(1) Endocytosis forms an early endosome. (2) The endosome matures into a MVB through the inward budding of its membrane, forming ILVs. Cargo sorting is mediated by ESCRT complexes and/or ceramide. (3) The MVB traffics to the plasma membrane. (4) The MVB fuses with the plasma membrane via SNARE complexes, releasing the ILVs as exosomes. (5) Exosomes can be taken up by a recipient cell via endocytosis, membrane fusion, or receptor-ligand interaction, delivering their functional cargo.

Figure 2. Key Molecular Components of an Exosome.

A representative exosome showing its lipid bilayer membrane enriched in cholesterol and sphingomyelin. Transmembrane proteins include tetraspanins (CD9, CD63, CD81) and integrins. Cytosolic proteins include ESCRT components (Alix, TSG101), heat shock proteins (Hsp70), and signaling proteins. The lumen contains various nucleic acids (miRNA, mRNA, DNA) and soluble proteins.

3. The Role of Exosomes in Normal Physiology

In a healthy organism, exosomes facilitate a myriad of essential physiological functions, acting as a sophisticated intercellular messaging system.

3.1. Immune Regulation

Exosomes are pivotal in both activating and suppressing immune responses. Antigen-presenting cells (e.g., dendritic cells) release exosomes bearing MHC-peptide complexes that can directly activate T-cells, a process crucial for initiating adaptive immunity (Thery et al., 2009). Conversely, exosomes from regulatory T-cells (Tregs) or tumors can carry immunosuppressive molecules like TGF- β , FasL, or PD-L1, which inhibit T-cell activation and promote immune tolerance, thereby preventing autoimmunity.

3.2. Neuronal Communication and Synaptic Plasticity

In the central nervous system (CNS), neurons, astrocytes, and microglia all release and take up exosomes. Neuronal exosomes have been shown to transfer synaptic proteins, receptors, and miRNAs, thereby influencing synaptic

strength and plasticity—the cellular basis of learning and memory (Chivet et al., 2014). Glial-derived exosomes can support neuronal health by providing trophic factors and clearing toxic metabolites.

3.3. Tissue Repair and Regeneration

Stem cells, particularly mesenchymal stem cells (MSCs), are prolific producers of exosomes that promote tissue repair. MSC-derived exosomes have been shown to enhance angiogenesis (the formation of new blood vessels), reduce apoptosis, and stimulate proliferation in damaged tissues like the heart after myocardial infarction and the kidney after acute injury. These effects are largely mediated by exosomal miRNAs that modulate pro-survival and pro-regenerative pathways in recipient cells.

3.4. Blood Coagulation

Platelets release exosomes that are highly pro-coagulant due to the exposure of phosphatidylserine on their surface, which provides a catalytic surface for the coagulation cascade. These exosomes play a role in normal hemostasis.

4. Exosomes as Drivers of Disease Progression

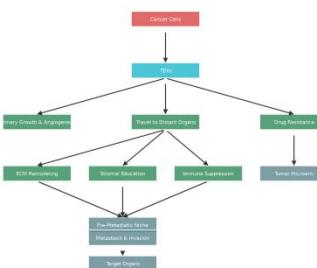
While essential for homeostasis, the same communicative properties of exosomes can be co-opted to promote disease. By creating a "field effect," exosomes can prepare distant sites for metastasis, propagate toxic proteins, and establish a pathological microenvironment.

4.1. Cancer

The role of exosomes in cancer is perhaps the most extensively studied. Tumor-derived exosomes (TEXs) contribute to nearly every hallmark of cancer (Figure 3).

Primary Tumor Growth and Angiogenesis: TEXs carry oncogenic proteins (e.g., EGFRvIII) and miRNAs (e.g., miR-21, miR-155) that can be transferred to neighboring cancer cells, driving proliferation and inhibiting apoptosis. Furthermore, TEXs

promote angiogenesis by delivering pro-angiogenic factors like VEGF, IL-8, and specific miRNAs (e.g., miR-9) to endothelial cells, stimulating new blood vessel formation to feed the growing tumor (Peinado et al., 2012).


Preparation of the Pre-Metastatic Niche: This is a critical and insidious function of TEXs. Before a cancer cell even leaves the primary tumor, TEXs travel through the circulation to specific organs. There, they remodel the local microenvironment to make it hospitable for future metastatic cells. They do this by: (1) promoting vascular leakiness; (2) recruiting and reprogramming bone-marrow-derived cells; (3) depositing fibronectin to create a scaffold for incoming cells; and (4) suppressing local immune surveillance. The organotropism of TEXs is partly dictated by integrins on their surface; for example, exosomes with $\alpha 6\beta 4$ and $\alpha 6\beta 1$ integrins target the lung, while those with $\alpha v\beta 5$ integrin target the liver (Hoshino et al., 2015).

Metastasis and Invasion: At the metastatic site, TEXs continue to support cancer cell colonization by enhancing invasiveness and providing survival signals.

Drug Resistance: TEXs are major mediators of chemoresistance. They can directly efflux chemotherapeutic drugs from cancer cells, transfer resistance-conferring miRNAs, or create a protective niche by interacting with stromal cells. For instance, exosomes from drug-resistant cancer cells can transfer P-glycoprotein, a key drug efflux pump, to drug-sensitive cells.

Figure 3. The Multifaceted Role of Tumor-Derived Exosomes (TEXs) in Cancer Progression.

TEX Roles in Cancer Progression

TEXs (1) promote primary tumor growth and angiogenesis; (2) travel to distant organs to prepare the pre-metastatic niche by remodeling the extracellular matrix, educating stromal cells, and suppressing immunity; (3) facilitate metastasis and invasion; and (4) confer drug resistance to other cancer cells and within the tumor microenvironment.

4.2. Neurodegenerative Diseases

Exosomes have emerged as a key mechanism for the intercellular spreading of pathological protein aggregates in neurodegenerative disorders, following a "prion-like" propagation model.

Alzheimer's Disease (AD): Exosomes from neurons contain and can propagate amyloid- β (A β) peptides and hyperphosphorylated tau. Notably, the exosomal membrane can act as a nucleation site for the aggregation of A β . Furthermore, exosomes can spread toxic tau oligomers from affected neurons to healthy ones, potentially explaining the stereotypical progression of tau pathology through the brain.

Parkinson's Disease (PD): The primary pathological protein in PD is α -synuclein. Exosomes have been shown to carry and transmit oligomeric forms of α -synuclein between neurons, contributing to the spread of Lewy body pathology. This process may be both a passive consequence of cellular stress and an active mechanism for clearing the toxic protein, which unfortunately exacerbates the disease.

Prion Diseases: Exosomes are involved in the spread of infectious prion proteins (PrPSc),

demonstrating their capacity to transmit even infectious agents within the nervous system.

4.3. Cardiovascular Diseases

Exosomes play a dual role in cardiovascular health and disease, with their impact depending on the cell of origin.

Atherosclerosis: Endothelial cell-derived exosomes under oxidative stress can promote vascular inflammation and the adhesion of monocytes to the endothelium, key early steps in plaque formation. Platelet-derived exosomes can accelerate coagulation within the plaque, increasing the risk of thrombosis.

Heart Failure: Following myocardial infarction, exosomes from stressed cardiomyocytes can trigger apoptosis in neighboring healthy cells. Conversely, as mentioned earlier, exosomes from MSCs have demonstrated significant cardioprotective and regenerative effects in preclinical models, highlighting their therapeutic potential.

4.4. Viral Infections and Other Pathologies

Many viruses, including HIV, HCV, and EBV, hijack the host exosome biogenesis machinery to promote their own replication, spread, and immune evasion. Viral components and even entire virions can be packaged into exosomes, providing a stealthy mode of transmission. Exosomes are also implicated in autoimmune diseases (e.g., rheumatoid arthritis), metabolic disorders, and many other conditions.

Table 1: Examples of Exosomal Biomarkers in Disease.

Disease	Biofluid	Exosomal Cargo	Potential Utility
Glioblastoma	Plasma/CSF	EGFRvIII mRNA, miR-21	Diagnosis, monitoring
Prostate Cancer	Urine/Plasma	PCA-3 lncRNA, PSA	Diagnosis, stratification
Ovarian Cancer	Ascites/Plasma	miR-200 family, Claudin-4	Early detection, prognosis
Alzheimer's	CSF/Plasma	Phospho-Tau, A β 1-42	Early diagnosis, tracking progression
Parkinson's	CSF/Plasma	α -synuclein oligomers	Pre-symptomatic diagnosis

5.2. Exosomes as Therapeutic Vehicles

5. Translational Applications: Diagnostics and Therapeutics

The unique properties of exosomes position them at the forefront of translational medicine, with applications as minimally invasive biomarkers and as sophisticated drug delivery systems.

5.1. Exosomes as Liquid Biopsy Biomarkers

The stability of exosomes in biofluids (blood, urine, cerebrospinal fluid) and their reflection of the originating cell's state make them ideal for "liquid biopsy." Isolating and analyzing exosomal cargo can provide real-time information about a disease.

Oncology: Exosomal miRNA profiles (e.g., high levels of miR-21 and miR-155) can serve as diagnostic and prognostic markers for various cancers. Detecting mutant DNA (e.g., KRAS, EGFR) or proteins (e.g., PSA, HER2) in plasma-derived exosomes can help in cancer diagnosis, monitoring treatment response, and detecting early relapse (Melo et al., 2015).

Neurology: The analysis of CNS-derived exosomes in the blood or CSF is a promising strategy for the early diagnosis of AD and PD. Elevated levels of exosomal phosphorylated tau, A β , and α -synuclein have been correlated with disease severity.

The natural biocompatibility, low immunogenicity, and targeting capability of exosomes make them superior to synthetic nanoparticles for drug delivery.

Engineering Exosomes: Exosomes can be engineered to carry therapeutic payloads (chemotherapeutics, siRNAs, miRNAs, proteins) either by loading the cargo into purified exosomes *in vitro* or by genetically modifying the parent cell to produce exosomes with the desired contents. For example, loading exosomes with siRNAs against oncogenic KRAS has shown potent anti-tumor effects in pancreatic cancer models (Kamerkar et al., 2017).

Targeting Specificity: The surface proteins of exosomes (e.g., integrins, tetraspanins) confer natural tissue tropism. This targeting can be enhanced by engineering the parent cells to express targeting ligands (e.g., RGD peptides for targeting integrins on endothelial cells) on the exosome surface.

Stem Cell-Derived Exosomes as Therapeutics: As alluded to earlier, unmodified exosomes from MSCs are themselves being developed as cell-free regenerative therapies for conditions like stroke and myocardial infarction, avoiding the risks associated with whole-cell transplantation.

6. Challenges and Future Perspectives

Despite the tremendous excitement surrounding exosomes, several significant challenges must be addressed to fully realize their clinical potential.

Isolation and Standardization: The lack of standardized, scalable, and cost-effective methods for isolating pure exosome populations free of other EVs and contaminants remains a major hurdle. Techniques like ultracentrifugation, size-exclusion chromatography, and immunoaffinity capture all have limitations in yield, purity, and scalability.

Heterogeneity: The term "exosome" likely encompasses a highly heterogeneous population of vesicles. Understanding the functional differences between exosome subpopulations is a critical area for future research.

Drug Loading and Manufacturing: Efficiently loading therapeutic cargo into exosomes without compromising their integrity or function, and scaling up production to clinical-grade levels, are significant technical and regulatory challenges.

Future research will focus on deepening our understanding of exosome biology, particularly the "language" of their targeting and the precise mechanisms of cargo sorting. Technologically, we will see advances in microfluidic-based isolation, high-resolution single-vesicle analysis, and sophisticated bioengineering approaches to create "designer exosomes" with optimized targeting, payload, and pharmacokinetic properties.

7. Conclusion

Exosomes have transcended their initial status as cellular refuse to be recognized as master regulators of intercellular dialogue. They are indispensable for maintaining physiological homeostasis, yet their subversion plays a causal role in the pathogenesis of a broad spectrum of diseases, from cancer to neurodegeneration. Their dual identity as both harbingers of disease and natural, sophisticated delivery shuttles encapsulates their unique position in modern biomedicine. The ongoing explosion of research in this field promises to not only unravel fundamental biological processes but also to revolutionize diagnostic paradigms and therapeutic strategies, ushering in a new era of exosome-based precision medicine.

References

Colombo, M., Raposo, G., & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. *Annual Review of Cell and Developmental Biology*, 30, 255–289.

Harding, C., Heuser, J., & Stahl, P. (1983). Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. *The Journal of Cell Biology*, 97 (2), 329–339.

Henne, W. M., Buchkovich, N. J., & Emr, S. D. (2011). The ESCRT pathway. *Developmental Cell*, 21 (1), 77–91.

Hoshino, A., Costa-Silva, B., Shen, T. L., et al. (2015). Tumour exosome integrins determine organotropic metastasis. *Nature*, 527 (7578), 329–335.

Kamerkar, S., LeBleu, V. S., Sugimoto, H., et al. (2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. *Nature*, 546 (7659), 498–503.

Kowal, J., Tkach, M., & Théry, C. (2014). Biogenesis and secretion of exosomes. *Current Opinion in Cell Biology*, 29, 116–125.

Melo, S. A., Luecke, L. B., Kahlert, C., et al. (2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. *Nature*, 523 (7559), 177–182.

Pan, B. T., & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. *Cell*, 33 (3), 967–978.

Peinado, H., Alečković, M., Lavotshkin, S., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. *Nature Medicine*, 18 (6), 883–891.

Théry, C., Ostrowski, M., & Segura, E. (2009). Membrane vesicles as conveyors of immune responses. *Nature Reviews Immunology*, 9 (8), 581–593.

Trajkovic, K., Hsu, C., Chiantia, S., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. *Science*, 319 (5867), 1244–1247.

Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nature Cell Biology*, 9 (6), 654–659.

Villarroya-Beltri, C., Gutiérrez-Vázquez, C., Sánchez-Cabo, F., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. *Nature Communications*, 4, 2980.