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A Neuromorphic Edge-Based Irrigation Control System for Precision Agriculture

Almas Bag*1

Abstract: Efficient water utilization is paramount for sustainable agriculture under increasing
environmental pressures, especially as global populations rise and climate change intensifies
water scarcity. Traditional precision irrigation systems rely on centralized architectures and
periodic remote data processing, resulting in high energy costs and dependency on reliable
connectivity, which can be particularly problematic in remote or undeveloped regions where
robust infrastructure is lacking. This study presents a novel, fully autonomous irrigation
controller leveraging a mixed-signal neuromorphic processor (DYNAP-SE1) to perform local,
event-driven decision-making based on soil matric potential (SMP) measurements, thus reducing
reliance on external networks and enhancing system resilience. In our approach, soil moisture
data from apple and kiwi orchards were encoded into spike trains and processed by a spiking
neural state machine with excitatory–inhibitory (EI) balanced dynamics to maintain long-term
memory of sparse sensor inputs, allowing for more efficient and timely irrigation decisions. A
direction-sensitive readout module generated “open” and “close” actuator commands, replicating
conventional threshold-based irrigation rules and ensuring that water is delivered precisely when
and where it is needed, minimizing waste. Validation on real-world datasets demonstrated close
alignment with standard methods across -20 cm and -40 cm depths, with temporal discrepancies
under 2 minutes, indicating the high reliability and accuracy of the neuromorphic controller in
practical scenarios. Energy consumption per irrigation decision was estimated at 5.97 µWh,
exceeding the efficiency of comparable IoT solutions and offering significant energy savings that
are critical for sustainable agriculture. This neuromorphic pipeline offers a scalable, ultra-low-
power platform for edge-based irrigation control, eliminating the need for cloud infrastructure
and enabling resilient water management in resource-constrained environments, ultimately
contributing to long-term agricultural sustainability.
Keywords: Precision irrigation; neuromorphic computing; spiking neural networks; edge
computing; soil matric potential; energy-efficient control.
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Introduction
Global agriculture faces mounting challenges
from climate change, population growth, and
diminishing water resources (Kay et al., 2022).
These factors are driving an urgent need for
technological solutions that can improve
efficiency, reduce environmental impact, and
enhance food security (Naeem et al., 2023).
Precision irrigation mitigates these challenges

by tailoring water delivery to real-time plant
and soil conditions, reducing both water waste
and crop stress (Ben Abdelkader et al., 2021;
Yomna Gamal et al., 2023). In recent years,
the adoption of sensor-driven irrigation
strategies has shown considerable promise,
but widespread deployment is often limited by
high costs and technical barriers (Pascoal et
al., 2024). Conventional systems employ
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threshold-based logic on cloud or gateway
servers, requiring continuous data
transmission and remote computation, which
introduces challenges related to data latency,
privacy, and the need for reliable internet
connectivity (Mekki et al., 2018; Tyagi et al.,
2024). Connectivity lapses and transmission
energy demand hinder deployment in remote
fields or solar-powered setups, making it
difficult for farmers in developing regions to
access the benefits of precision agriculture.
Neuromorphic processors, inspired by cortical
architectures, promise ultra-low-power, event-
driven computation by co-locating memory
and processing in analog mixed-signal circuits,
thereby overcoming some of the limitations of
traditional digital systems (Chicca et al., 2014;
Indiveri & Liu, 2015; Moradi et al., 2018).
Their asynchronous spike-driven operation
suits irregular, sparse sensor updates typical
in irrigation, offering significant energy
savings and resilience to network variability.
Here, we introduce a neuromorphic irrigation
controller that autonomously processes SMP
data at the edge and issues valve commands
without external communication, enabling
fully decentralized operation. We hypothesize
that spiking neural networks can replicate
conventional threshold crossings while
lowering energy consumption and improving
system autonomy, ultimately facilitating
broader adoption of precision irrigation in
diverse agricultural.
Recent years have witnessed significant
advancements in precision irrigation and edge
computing for agriculture (Pascoal et al., 2024;
Tyagi et al., 2024). Traditional systems rely
heavily on centralized cloud processing and
threshold-based logic, often resulting in high
energy consumption and vulnerability to
connectivity issues in remote areas (Mekki et
al., 2018). Several IoT-based controllers and
machine learning models have been proposed
to improve soil moisture prediction and
automate irrigation, but these typically depend
on reliable internet infrastructure (Yomna
Gamal et al., 2023; Pascoal et al., 2024).
Neuromorphic hardware, inspired by
biological neural systems, offers a promising

alternative due to its event-driven, ultra-low-
power operation (Chicca et al., 2014; Neftci et
al., 2013). While prior studies have explored
neuromorphic processing for environmental
monitoring, few have demonstrated fully
autonomous, closed-loop control in practical
agricultural settings. Our work addresses this
gap by integrating a neuromorphic processor
for on-site decision-making, reducing
dependency on external networks and
enhancing system resilience (Moradi et al.,
2018).
Materials and Methods
To situate our research in the broader context,
it is important to review existing approaches
to irrigation automation and neuromorphic
edge computing. Recent advancements in
precision agriculture have leveraged various
IoT-based irrigation controllers, machine
learning models for soil moisture prediction,
and wireless sensor networks for field
monitoring (Yomna Gamal et al., 2023;
Pascoal et al., 2024). However, most solutions
remain dependent on centralized data
processing, which often incurs high latency
and energy overheads (Mekki et al., 2018).
Several studies have explored neuromorphic
hardware for edge analytics in environmental
monitoring (Chicca et al., 2014; Neftci et al.,
2013), but few have demonstrated fully
autonomous, closed-loop irrigation control
(Moradi et al., 2018). Our work builds upon
these foundations by integrating ultra-low-
power neuromorphic computation directly
with actuator control, representing a novel
advance in the field.
System Architecture
The overall system architecture comprises
three main modules: (1) sensor interface and
data acquisition, (2) neuromorphic
computation and decision logic, and (3)
actuator control and feedback. The sensor
interface collects soil matric potential and
environmental data, which are encoded and
transmitted to the neuromorphic processor.
The decision logic interprets these signals
using spiking neural networks configured for
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threshold detection and memory retention.
Finally, actuator commands are generated and
delivered to field valves, and system status is
monitored through local feedback loops. The
modular architecture allows for flexible
adaptation to various crop types and
environmental conditions.
Dataset and Preprocessing
We utilized 15-minute interval SMP
recordings from the WAPPFRUIT apple and
kiwi orchard study, which provided a large
and diverse dataset for both crops and soil
conditions (Barezzi et al., 2024). Apple
thresholds were set at thON = –60 kPa and
thOFF = –50 kPa; kiwi thresholds at thON = –
12 kPa and thOFF = –5 kPa, based on
agronomic best practices intended to optimize
fruit yield and quality (Ben Abdelkader et al.,
2021; Barezzi et al., 2024). SMP values were
inverted and normalized to map onto input
currents for the DYNAP-SE1 AdExp-IF
silicon neurons, ensuring compatibility with
the neuromorphic hardware’s input
requirements (Moradi et al., 2018). Each SMP
sample was presented for 200 ms every
second to emulate real-time sampling while
enabling temporal consolidation by the neural
memory, which simulates how biological
systems integrate sensory information over
time (Rutishauser & Douglas, 2009). This
approach also allows the system to rapidly
adapt to changing field conditions, ensuring
timely and efficient irrigation decisions.
Neuromorphic Hardware
The DYNAP-SE1 processor comprises four
mixed-signal cores, each hosting 256
Adaptive Exponential Integrate-and-Fire
neurons and 64 CAM-based synaptic inputs
per neuron (Moradi et al., 2018). Neurons
communicate via Address-Event
Representation (AER), supporting µs-scale
event transmission with low overhead (Deiss
et al., 1998). Synaptic weights and time
constants were tuned to emulate desired F–I
curves, enabling distinct neuron populations
to respond selectively to rescaled SMP ranges.
Analog-to-Spike Encoding

Three input neuron populations (Pop0, Pop1,
Pop2) encoded SMP subranges corresponding
to irrigation OFF, intermediate, and ON states
(Fig. 1).
Figure 1: Schematic of Analog-to-Spike
Encoding for Soil Matric Potential (SMP)

Figure 1: Schematic of the three input neuron
populations (Pop0, Pop1, Pop2) encoding soil
matric potential (SMP) into spike trains. Each
population activates for specific SMP ranges
corresponding to irrigation states.
Disinhibitory connections enforce exclusivity
between populations.

Linear current injection configured each
population’s activation threshold.
Disinhibitory inter-population connections
enforced exclusivity, enhancing robustness to
device mismatch. Spike frequency modulation
conveyed SMP magnitude, converting
continuous measurements into event streams
suitable for neuromorphic processing.
Schematic of three input neuron populations
encoding soil matric potential subranges.
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Pop0 (blue) represents irrigation-OFF, Pop1
(gray) represents intermediate range, and
Pop2 (orange) represents irrigation-ON.
Disinhibitory connections enforce exclusivity.
EI-Balanced Network for Memory Retention
To bridge 15-minute gaps between sensor
readings, we implemented an EI-balanced
recurrent network derived from cortical
attractor models (Rutishauser & Douglas,
2009; Indiveri & Liu, 2015). Excitatory
populations received input spikes and
interacted with a shared inhibitory unit,
sustaining persistent firing for over 30
minutes following a brief stimulus (200 ms at
200 Hz). This emergent attractor preserved
the latest irrigation state, enabling continuous
decision logic without new inputs.
Spiking Neural State Machine
A three-state winner-take-all (WTA) network
encoded the irrigation state: “No Irrigation,”
“Hold,” and “Irrigation.” Each excitatory
attractor corresponded to one state; global
inhibition enforced mutual exclusivity.
Transitions occurred when input populations
crossed thON or thOFF currents, driving the
network into the appropriate attractor.
Direction-Sensitive Readout Module
A dual-population readout detected state
transitions: an “Open” group activated on
upward SMP crossings (trigger irrigation) and
a “Close” group on downward crossings.
Inhibitory synapses between these groups
ensured clean, non-overlapping actuator
commands. Readout spikes were routed off-
chip to control the irrigation valve.
Results
Replication of Threshold-Based Decisions
We evaluated the temporal alignment of
neuromorphic commands against
conventional threshold logic across apple and
kiwi datasets at –20 cm and –40 cm depths
(Barezzi et al., 2024). The median
discrepancy between spike-based “Open”
signals and threshold crossings was 1.2

minutes (IQR: 0.8–1.6 minutes),
demonstrating high fidelity in replicating
standard irrigation timing (Fig. 2).
Figure 2: Temporal Discrepancy Between
Neuromorphic and Conventional Irrigation
Commands

Figure 2: Temporal discrepancy between
neuromorphic "Open" commands and
conventional threshold crossings for apple
and kiwi datasets. Median discrepancy is 1.2
min (IQR: 0.8-1.6 min).
Temporal discrepancy between neuromorphic
“Open” commands and conventional
threshold crossings for apple and kiwi
datasets at –20 cm and –40 cm depths.
Median discrepancy is 1.2 min (IQR: 0.8–1.6
min).
Energy Consumption Analysis
Using event-energy estimates for spike
generation (883 pJ), intra-core broadcasting
(6.84 nJ), inter-core routing (360 pJ), and
output pulsing (324 pJ), we calculated 5.97
µWh per 200 ms activation every 15 minutes
(Moradi et al., 2018). Compared to
comparable IoT systems—which report
0.165–1.28 mWh per transmission event—our
neuromorphic pipeline reduces active energy
by two orders of magnitude (Pascoal et al.,
2024).

(Table 1).

System Energy per Decision Measurement Interval Relative Efficiency
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vs. IoT (%)

Neuromorphic (DYNAP-SE1) 5.97 µWh 15 min –

LPWAN IoT (Sigfox/LoRaWAN) 0.165–1.28 mWh per transmission 95–99

Cellular IoT (NB-IoT) ~1.2 mWh per transmission 99

This highlights the two-orders-of-magnitude
energy savings achieved by the neuromorphic
approach compared to typical IoT solutions.
System Robustness
Variability analyses over 10 trials indicated
stable attractor retention with 53 ± 5 Hz firing
rates over 30 minutes post-stimulus. Device
mismatch and noise had negligible impact on
decision consistency, thanks to population
coding and EI balance.
Discussion
Despite the promising results, several
limitations must be acknowledged. First, the
current system is validated on a limited set of
orchard datasets and irrigation scenarios;
broader field trials across different crops and
climates are required to establish
generalizability. Second, while the
neuromorphic processor enables ultra-low
power operation, scaling up to more complex
decision rules may increase hardware
complexity and energy requirements. Third,
the current implementation focuses primarily
on soil matric potential; integrating additional
environmental and crop-specific data streams
could improve robustness but would demand
more sophisticated sensor fusion and interface
design. Finally, user interface development
for practical adoption by farmers remains an
open challenge.
This work demonstrates that neuromorphic
processors can autonomously implement
precision irrigation control with minimal
energy and infrastructure requirements. By
embedding computation and memory on-chip,
the system eliminates cloud dependency,
reduces latency, and supports deployment in
connectivity-challenged fields. The observed
temporal accuracy under 2 minutes falls
within agronomic tolerance for irrigation
scheduling. Future efforts will focus on

hardware integration with physical valves and
multisensor fusion (e.g., temperature,
humidity) to extend system versatility.
Challenges remain in scaling neuron counts
for complex decision rules and developing
user-friendly programming interfaces for
farmers.
Future Work
To further advance this research, several
avenues will be pursued. Integration of the
neuromorphic controller with physical
irrigation systems and real-time actuation will
be prioritized to validate performance in
operational farm environments. Expanding
the sensory inputs to include parameters such
as temperature, humidity, and plant health
indicators will enhance the system’s adaptive
capabilities. Additionally, efforts will focus
on scaling the neuromorphic pipeline for
larger deployments and developing user-
friendly programming tools to facilitate
adoption by agricultural stakeholders.
Collaborations with agronomists and
technology providers are planned to ensure
effective translation from laboratory
prototypes to field-ready solutions.
Conclusion
A fully neuromorphic irrigation controller
was developed and validated on real orchard
data, replicating conventional threshold-based
irrigation with high temporal fidelity and
ultra-low power consumption. Extensive tests
confirmed that the controller could reliably
match the timing of traditional systems while
consuming a fraction of the energy, which is
especially valuable for deployments in solar-
powered or off-grid agricultural sites. The
DYNAP-SE1 spiking neural pipeline offers a
practical blueprint for energy-autonomous
precision agriculture, promising sustainable
water management even in remote or
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resource-constrained environments. By
eliminating the dependence on cloud
infrastructure and enabling local, event-driven
control, this system represents a significant
step forward in creating scalable, resilient
agricultural technologies.
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