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Leveraging Generative Adversarial Networks for Synthetic Data Augmentation in Maize
Seedling Detection: A Novel Approach to Mitigate Class Imbalance in the MSDD

Benchmark
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Abstract: The automation of plant stand counting via Unmanned Aerial Vehicles (UAVs) and
deep learning represents a paradigm shift in precision agriculture. However, the performance of
object detection models is severely hampered by a fundamental challenge: extreme class
imbalance in real-world agricultural datasets. Models excel at detecting prevalent "single plant"
instances but fail on rare yet agronomically critical "double" and "triple" plant clusters. This
study proposes a novel methodology to mitigate this imbalance by leveraging Generative
Adversarial Networks (GANs) for synthetic data augmentation. Building upon the publicly
available Maize Seedling Detection Dataset (MSDD), we developed a conditional StyleGAN2-
ADA architecture to generate high-fidelity, synthetic images of double and triple maize seedlings
across varied growth stages (V4-V8) and environmental conditions. We augmented the original
MSDD training set with this synthetic data and benchmarked the performance of YOLOv9 and
YOLO11 models. Results demonstrate that models trained on the augmented dataset showed a
marked improvement in detecting rare classes. The mAP@0.5 for double plants increased by
18.7% for YOLOv9 and 22.3% for YOLO11, while recall for triple plants improved by 15.1%
and 19.8%, respectively, without compromising performance on the single plant class. This
research establishes a robust, scalable framework for synthetic data generation in agricultural
computer vision, effectively addressing data scarcity for rare classes and paving the way for
more reliable automated stand counting systems in precision agriculture.
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1. Introduction
Precision agriculture has revolutionized crop
management by enabling data-driven
decisions, with plant stand counting emerging
as a critical metric for yield estimation and
agronomic planning. Traditionally, stand
counting relied on manual labor, which is
time-consuming, error-prone, and impractical
for large-scale operations. Recent
advancements in Unmanned Aerial Vehicles

(UAVs) and deep learning have automated
this process, offering high-throughput and
objective assessments. However, a persistent
challenge in applying deep learning to
agricultural datasets is the severe class
imbalanceâ€”where common classes such as
single maize seedlings vastly outnumber rare
but agronomically significant classes like
double and triple plant clusters. This
imbalance leads to model bias, making it
difficult for detection algorithms to accurately
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identify less-represented classes, which are
crucial for understanding plant competition
and optimizing field management. Previous
studies, including the Maize Seedling
Detection Dataset (MSDD) (Kharismawati &
Kazic, 2025), have highlighted this limitation
and called for innovative solutions to generate
realistic, diverse training examples for under-
represented categories. Addressing this gap,
our study introduces synthetic data
augmentation using Generative Adversarial
Networks (GANs) as a novel approach to
mitigating class imbalance, thereby enhancing
the robustness and generalization of plant
detection models in real-world agricultural
scenarios.
2. Related Work
Object detection and plant phenotyping in
agriculture have seen rapid innovation over
the past decade, largely driven by
advancements in deep learning and high-
throughput phenotyping platforms. Early
approaches relied heavily on traditional
machine learning algorithms, such as support
vector machines and random forests, coupled
with handcrafted features for tasks like leaf
counting, disease detection, and weed
identification (Baraldi et al., 2015). However,
the emergence of convolutional neural
networks (CNNs) and their derivatives,
including YOLO (Redmon & Farhadi, 2018),
Faster-RCNN (Ren et al., 2015), and SSD
(Liu et al., 2016), has revolutionized object
detection in agricultural imagery, enabling
end-to-end learning from raw pixels.
Numerous publicly available benchmarks
have propelled advances in agricultural
computer vision, such as the CVPPP Leaf
Counting Challenge dataset, PlantVillage, and
the Maize Seedling Detection Dataset
(MSDD), each bringing unique challenges
regarding class diversity and imbalance.
These datasets, while enabling progress, often
suffer from pronounced representation gaps
for rare classesâ€”such as multiple seedling
clusters or specific disease
phenotypesâ€”limiting the generalizability
and robustness of trained models.

Despite these advances, class imbalance
remains a pervasive challenge. In real-world
agricultural datasets, instances of
interestâ€”such as clustered seedlings, rare
disease lesions, or atypical growth
patternsâ€”are often underrepresented.
Standard techniques to mitigate imbalance
include oversampling, undersampling, and the
application of weighted or focal loss functions
(Lin et al., 2017). More advanced approaches,
such as cost-sensitive learning and ensemble
methods, have also been explored, but can
introduce overfitting or information loss,
particularly in settings where collecting more
rare examples is costly or infeasible.
Evaluation metrics such as mAP, F1-score,
and Cohenâ€™s Kappa are commonly
adopted to measure the impact of class
imbalance and the effectiveness of mitigation
strategies.
Recent years have seen a growing interest in
synthetic data generation as a solution to this
problem. Data augmentation methods, ranging
from simple transformations (rotation,
flipping, scaling) to more sophisticated
approaches like mixup and CutMix, have
been widely adopted to artificially expand
training sets (Shorten & Khoshgoftaar, 2019).
Yet, these typically produce limited diversity,
especially for complex, rare classes.
Generative Adversarial Networks (GANs)
have emerged as a transformative technology
for creating realistic synthetic images in fields
such as medical imaging (Frid-Adar et al.,
2018), traffic scene simulation (Zhu et al.,
2017), and more recently in agriculture.
GAN-generated data have been successfully
used to balance datasets for rare disease
detection in plant leaves (Picon et al., 2019),
fruit counting (Rahnemoonfar & Sheppard,
2017), and crop classification. Other
generative models, such as Variational
Autoencoders (VAEs) and diffusion models,
are beginning to be explored for agricultural
image synthesis, though their adoption
remains limited compared to GANs.
Despite this promise, the agricultural vision
community has only begun to systematically
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explore GANs for data augmentation, with
most studies focusing on basic augmentations
or domain adaptation rather than targeted
rare-class synthesis. Domain adaptation and
transfer learning approaches have also been
used to address domain shift between
synthetic and real data, further enhancing
model robustness.
Our work extends this literature by employing
conditional StyleGAN2-ADA (Karras et al.,
2020) to generate photorealistic images of
rare maize seedling clusters, addressing the
specific challenge of class imbalance in the
MSDD benchmark. Unlike prior studies, we
systematically evaluate the impact of GAN-
based augmentation on model performance
across multiple architectures and consider
broader issues such as synthetic data quality,
domain shift, and explainability. This
approach contributes to a growing body of
research advocating for the integration of
advanced generative models in agricultural AI
pipelines, highlighting both the opportunities
and challenges ahead.
Synthetic data generation has emerged as a
promising alternative. Generative Adversarial
Networks (GANs) have shown remarkable
success in creating realistic images across
various domains, notably in medical imaging
for rare disease classes and in autonomous
driving for simulating edge cases. Despite
their potential, the use of GANs for
agricultural data augmentation remains
limited. Most existing agricultural
applications have focused on conventional
data augmentation techniques (e.g., rotation,
flipping, color jitter), which lack the capacity
to introduce genuinely novel examples of rare
classes. Our work builds on the strengths of
GAN-based synthetic data generation, aiming
to fill this gap within the agricultural vision
community by systematically evaluating its
impact on class-imbalanced maize seedling
datasets.
2.3. Challenges and Open Problems

Despite substantial progress, several open
challenges persist in applying synthetic data
augmentation to agricultural AI. These
include the potential for synthetic images to
introduce unintended biases, the need for
explainable models that can justify
predictions based on both real and synthetic
data, and the requirement for standardized
benchmarks and protocols for evaluating
synthetic data quality. Addressing these issues
will be crucial for the widespread adoption
and trust of synthetic data in both research
and industry.
3. Materials and Methods
3.1. Base Dataset: MSDD
The Maize Seedling Detection Dataset
(MSDD) (Kharismawati & Kazic, 2025)
serves as the foundation for this study. We
utilized the training subset, comprising
163,921 annotated objects, with a severe class
imbalance (Single: 92.47%, Double: 6.07%,
Triple: 1.45%). Images were preprocessed to
isolate patches containing the rare double and
triple plant classes.
3.2. Synthetic Data Generation with
Conditional StyleGAN2-ADA
To address the class imbalance, we employed
a conditional StyleGAN2-ADA model
(Karras et al., 2020). The model was
conditioned on two labels: plant_class (double
or triple) and growth_stage (V4-V6 or V6-
V8). This conditioning ensures the generated
images are not only photorealistic but also
contextually relevant to the target task.

1. Training Data: We curated a dataset
of 1,500 image patches each for
double and triple plants from the
MSDD training set.

2. Training Details: The model was
trained for 10,000 kimg with a
resolution of 512x512 pixels using an
adaptive discriminator augmentation
(ADA) mechanism to prevent
overfitting on the small real dataset.

3. Generation: Post-training, we
generated 15,000 synthetic images for
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each rare class (double and triple),
effectively balancing their
representation with the single plant
class in the augmented dataset.

3.3. Dataset Augmentation and Model
Training
The original MSDD training set was
combined with the 30,000 generated synthetic
images. We benchmarked two state-of-the-art
architectures: YOLOv9 and YOLO11.

 Model Configurations: Both models
were trained with identical
hyperparameters: an initial learning
rate of 0.01, momentum of 0.937, and
weight decay of 0.0005.

 Training Regime: Two models were
trained for each architecture:

o Baseline Model: Trained
solely on the original,
imbalanced MSDD training
data.

o Augmented Model: Trained
on the combined original +
synthetic dataset.

 Evaluation: Both models were
evaluated on the original, untouched
MSDD test set from the 2022 season
to ensure a fair comparison of
generalization performance.

4. Results

4.1. Qualitative Assessment of Synthetic
Data
Figure 1 shows samples of real versus
synthetic maize seedlings. The synthetic
images exhibit high visual fidelity, accurately
capturing the texture of maize leaves, the
structure of clustered plants, and variations in
soil background and lighting.

4.2. Quantitative Benchmarking Results
Table 1 presents a comparative analysis of the
baseline and augmented models. The
augmentation strategy led to significant
performance gains on the rare classes.

Table 1: Performance Comparison
(mAP@0.5) on MSDD Test Set

Model Training Data Single Double Triple mAP@0.5

YOLOv9 Baseline (Original) 0.941 0.283 0.112 0.445

+ Synthetic 0.947 0.47 0.301 0.573

YOLO11 Baseline (Original) 0.923 0.254 0.098 0.425

+ Synthetic 0.93 0.477 0.325 0.577

The confusion matrices (Figure 2) further
illustrate the reduction in misclassification.
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The augmented models significantly
decreased the number of false negatives
(missed detections) for double and triple
plants, while also reducing false positives
where background was classified as single
plants.
5. Discussion
This study demonstrates the effectiveness of a
GAN-based synthetic data augmentation
strategy in addressing class imbalance in
agricultural computer vision. The observed
performance improvements in YOLOv9 and
YOLO11 models for detecting rare double
and triple maize seedling clusters highlight
the potential of generative models to mitigate
data scarcity in a targeted and scalable way.
The success of this approach is attributed to
the conditional StyleGAN2-ADA
architecture's capacity to generate high-
fidelity, contextually relevant synthetic
images. Conditioning the model on both plant
class and growth stage ensured that generated
samples were visually plausible and
agronomically meaningful, capturing detailed
leaf textures, plant structures, and spatial
arrangements typical of real seedling clusters.
This qualitative fidelity resulted in
quantitative improvements, as indicated by
increased mAP@0.5 and recall for the double
and triple classes. Models trained on the
augmented dataset learned more robust and
discriminative features for these rare classes,
which substantially reduced false negatives.
This improvement is critical for stand
counting tasks, where missing clusters can
lead to inaccurate yield predictions.

Our findings align with and extend the
growing body of literature on synthetic data in
specialized domains, such as medical imaging
[Frid-Adar et al., 2018], where generating rare
pathologies has proven effective. However,
this work moves beyond simple class-
balancing by explicitly incorporating domain-
specific conditional variables (growth stage),
a nuance often absent in early agricultural
GAN applications. The results confirm that
GANs can do more than just expand dataset
size; they can strategically enrich the feature
space of under-represented classes, thereby
correcting the inherent bias of models trained
on imbalanced data.
The stable or slightly improved performance
on the prevalent single plant class is
noteworthy. This suggests that introducing
synthetic rare-class data did not introduce
significant noise or cause catastrophic
forgetting of dominant class features. Instead,
the approach provided a more comprehensive
representation of real-world field conditions,
where all three classes coexist. The reduction
in false positives, such as background
misclassified as single plants, further indicates
that the models developed a better
understanding of the visual characteristics of
maize seedlings in various configurations,
resulting in more precise detections.
Several limitations and challenges remain.
The effectiveness of this method depends on
the quality and diversity of the initial set of
real rare-class images used to train the GAN.
If this seed data lacks variation in lighting,
soil type, or plant health, the generative model
may inherit these biases, limiting output
diversity. Additionally, the domain gap, or
subtle distributional differences between
synthetic and real images, remains a concern.
Although the StyleGAN2-ADA model with
adaptive augmentation aims to address this,
perfect alignment is unlikely. Future research
could explore domain adaptation techniques
or use synthetic data in a semi-supervised
learning framework to further bridge this gap.
The computational cost of training a high-
fidelity GAN is substantial, which may limit



Available Online:

2025; 1-1 | pp.26-32

P a g e 31 |

accessibility for researchers with limited
resources. However, this initial investment
can be distributed across multiple model
training cycles and benchmarking efforts,
making it a cost-effective solution over time
compared to the extensive manual labor
required for additional field data collection
and annotation.
In conclusion, this research establishes a
robust framework for leveraging advanced
generative AI to address fundamental data
challenges in precision agriculture. The
demonstrated improvements in detecting rare
but critical plant clusters support the
development of more reliable and automated
plant stand counting systems. This
methodology is adaptable to a wide range of
agricultural phenotyping tasks affected by
class imbalance, including rare disease
detection, stress symptom identification, and
recognition of atypical weed species.
6. Conclusion and Future Work
This study successfully demonstrated that
synthetic data augmentation using conditional
GANs is a powerful tool for mitigating severe
class imbalance in agricultural vision tasks.
By augmenting the MSDD benchmark with
realistically generated images of rare plant
clusters, we significantly enhanced the
detection capabilities of YOLO models
without collecting additional costly and labor-
intensive field data. Our findings suggest that
integrating GAN-generated data can serve as
a blueprint for future research seeking to
address data scarcity in other crop types, plant
diseases, or environmental stress detection.
Future work will explore leveraging more
advanced generative models, such as diffusion
models or transformer-based architectures, for
even higher fidelity and diversity in synthetic
image generation. Additionally, we plan to
expand the evaluation framework to include
multispectral and hyperspectral datasets,
investigate the impact of synthetic data on
explainability and model interpretability, and
collaborate with plant scientists to validate
model predictions in field trials. Extending

this framework to other agricultural
phenotyping problems and integrating it with
farm management platforms will be key steps
toward realizing the full potential of AI in
precision agriculture.
7. Limitations and Ethical Considerations
While synthetic data augmentation addresses
critical challenges in class imbalance, it also
raises potential concerns regarding the
authenticity and interpretability of machine
learning models. Over-reliance on synthetic
data may inadvertently diminish model
robustness if the generated samples do not
fully capture the distributional complexity of
real-world phenomena. Furthermore, the use
of GANs requires careful attention to data
privacy and the provenance of training
samples, especially in collaborative, multi-
institutional settings. Ethical deployment of
these technologies should include
transparency, data sharing agreements, and
stakeholder engagement to ensure responsible
innovation.
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