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Electric Agricultural Multi-Robot Systems
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Abstract: Coordinating multi-robot systems (MRS) in agriculture is essential for tackling
increasing labor costs and enhancing harvesting efficiency. Nonetheless, optimizing task
allocation for electric harvesting robots involves managing a complex trade-off between
minimizing the makespan and total energy consumption. This challenge is compounded by real-
world factors such as velocity changes with load, battery limitations, and the need for frequent
depot returns. The study introduces the Agricultural Multi-Electrical-Robot Task Allocation
(AMERTA) problem, a new framework incorporating these frequently overlooked practical
constraints. To address this NP-hard issue, we present a Hybrid Hierarchical Route
Reconstruction Algorithm (HRRA). The HRRA framework features several innovative
mechanisms: a hierarchical encoding structure that separates route construction from robot
assignment, a dual-phase initialization method with variable load limits, specific optimizers for
task sequences within and between routes, and two unique reconstruction operators—Charging-
based Route Reconstruction (CRRM) and Split-based Route Reconstruction (SRRM)—to
proactively manage battery and load constraints. Comprehensive experiments conducted on 45
benchmark instances of different scales reveal HRRA's improved performance compared to
seven leading algorithms, including MODABC, CDABC, AMOEA, and NSGA-II. Statistical
tests such as the Wilcoxon signed-rank and Friedman tests confirm that HRRA considerably
outperforms its rivals, providing better solution convergence and diversity. This research not
only offers a solid mathematical model for a crucial issue in agricultural robotics but also
delivers an effective algorithmic solution, contributing to more efficient and sustainable
automated farming practices.
Keywords: agricultural robotics,evolutionary algorithm, electric vehicles, multi-objective
optimization, multi-robot task allocation (MRTA), hierarchical optimization, orchard harvesting
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1. Introduction
Global agriculture is confronting a pressing
issue as labor expenses rise swiftly and
shortages become more common, hastening
the unavoidable transition to automation. Of
particular concern is orchard harvesting,
which poses a substantial challenge for
automation due to its demanding needs for
promptness and quality. Although the latest

developments in robotic pickers demonstrate
encouraging potential, single-robot systems
are fundamentally restricted in large-scale
operations. Therefore, the implementation and
effective management of Multiple Robot
Systems (MRS) are crucial to attaining the
necessary levels of operational efficiency and
economic sustainability.
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The main difficulty in coordinating a multi-
robot system (MRS) is encapsulated by the
Multi-Robot Task Allocation (MRTA)
problem. In agricultural settings, MRTA
encompasses two linked aspects: developing
effective routes (task sequences for a given
journey) and allocating these routes to robots.
Employing suboptimal, random, or
approximate allocation methods typically
results in significant inefficiencies across the
system, including uneven workloads and
heightened energy consumption.
Consequently, achieving optimized task
allocation is a vital area of research.
Agricultural MRTA is characterized by
fundamental conflicts between key
performance indicators, primarily the
makespan (total completion time) and the
total energy consumption (Stewart et al.,
2023). Minimizing makespan favors parallel
execution by multiple robots, which often
necessitates frequent returns to the depot to
unload harvested fruit. Conversely,
minimizing energy consumption encourages
robots to fully utilize their carrying capacity
before returning, reducing the number of
energy-intensive trips to and from the depot.
This conflict is compounded by the NP-hard
nature of makespan minimization and a suite
of practical constraints often simplified in
existing literature: load-dependent velocity
(a heavier robot moves slower, increasing
travel time) (Montoya et al., 2017), non-linear
energy consumption (Montoya et al., 2017;
McNulty et al., 2022), and finite battery
capacity requiring opportunistic charging or
battery swaps at the depot (Dorling et al.,
2016; McNulty et al., 2022). The interplay of
these constraints drastically expands and
complicates the solution space.
To distinguish this complex and practically
significant problem from conventional MRTA
formulations, we define it as the Agricultural
Multi-Electrical-Robot Task Allocation
(AMERTA) problem. This paper's main
contribution is a novel Hybrid Hierarchical
Route Reconstruction Algorithm (HRRA)

designed to address AMERTA's unique
challenges. The specific contributions are:

1. A thorough mathematical model for
the AMERTA issue that effectively
represents the dynamics of speed
dependent on payload, energy usage,
and battery limitations in realistic
orchard settings.

2. The creation of HRRA incorporates an
innovative hierarchical solution
encoding method, a variable load-limit
initialization approach, a pair of task
sequence optimizers, as well as two
dedicated route reconstruction
mechanisms (CRRM and SRRM)
designed to manage constraints related
to battery and load.

3. An extensive experimental assessment,
using a novel collection of 45
benchmark instances, has been
conducted. The findings reveal
HRRA's outstanding performance
compared to seven cutting-edge
algorithms, with statistical analysis
confirming these results.

The structure of the rest of this paper is as
follows: Section II provides a review of
pertinent literature related to EVRP, general
MRTA, and agricultural MRTA. Section III
outlines the formulation of the AMERTA
problem. Section IV delves into the proposed
HRRA methodology. Section V offers
detailed experimental results and analysis.
Lastly, Section VI wraps up the paper and
proposes directions for future research. All
tables and figures are numbered sequentially
in the order they are introduced, and
references to them in the text have been
checked for consistency.

2. Literature Review

The AMERTA issue lies where the Electric
Vehicle Routing Problem (EVRP) intersects
with the broader area of MRTA. This review
brings together significant research from these
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fields, laying the groundwork for our
contribution.

2.1 Electric Vehicle Routing Problem (EVRP)
Research

The surge in electric vehicles (EVs) is largely
due to improvements in battery technology
(McNulty et al., 2022). A key challenge in
electric vehicle routing problems (EVRP)
involves handling the limited battery capacity
along with traditional load constraints
(Montoya et al., 2017). Various solution
strategies exist, such as Variable
Neighborhood Search, Artificial Bee Colony
algorithms, and Ant Colony Optimization
(Montoya et al., 2017). Early EVRP models
used constant, simplified energy consumption
rates. Recent developments have introduced
non-linear, more realistic consumption
models, resulting in algorithms like enhanced
PSO-genetic hybrids and adaptive genetic
algorithms (Dorling et al., 2016). Nonetheless,
these models do not address the unique
aspects of orchard operations, where a robot's
constantly changing load significantly affects
its speed and energy consumption rate, posing
challenges beyond typical EVRP.
An essential element of the Electric Vehicle
Routing Problem (EVRP) is the charging
approach (Montoya et al., 2017).
Conventional models typically incorporate
several charging stations alongside solitary
delivery journeys (Dorling et al., 2016).
Studies have investigated methods such as
partial charging, battery exchanges, and
mobile charging stations to boost adaptability
(Montoya et al., 2017; McNulty et al., 2022).
In the context of orchard harvesting, fruit-
picking robots need to return to a central
depot to offload produce, which makes
battery swapping there a viable and efficient
option. Nonetheless, this also brings about
fresh complications: operations might be
halted due to battery depletion, and swapping
the battery restores the robot to its initial state,
impacting future task planning (Dorling et al.,
2016).

Furthermore, conventional research on the
Electric Vehicle Routing Problem (EVRP)
has mainly concentrated on optimization with
a single objective in mind. The few studies
addressing multiple objectives generally use
weighted-sum methods, which tend to
simplify the problem and pose challenges
when directly applying them to the
intrinsically bi-objective nature of AMERTA.

2.2 General MRTA Research

The MRTA issue involves distributing tasks
to robots with limited capacities, which
conceptually corresponds to the Generalized
Assignment Problem (GAP) and its variations.
Nevertheless, achieving operational efficiency
necessitates meticulous scheduling and
sequencing of tasks for each robot. The
requirement to optimize several conflicting
goals, such as time and energy, greatly
increases the problem's complexity.
This has led to the creation of advanced
Multi-Objective Evolutionary Algorithms
(MOEAs) (Li et al., 2021; Yan et al., 2023). A
hybrid competitive swarm optimizer with
adaptive grid partitioning was suggested for
tackling large-scale, many-objective problems,
and a multi-objective PSO was developed that
employs a probability-based strategy for
selecting leaders (Xiong et al., 2022). Zhang
et al. (2024) incorporated the Lin-Kernighan-
Helsgaun heuristic to generate high-quality
preliminary solutions for MOEAs. An
indicator-based MOEA with a hybrid
encoding scheme was also recently introduced
(Yu et al., 2021). Although these versatile
MRTA approaches are strong, they fail to
consider the multi-trip nature, load-dependent
dynamics, and specific battery management
strategies needed for agricultural harvesting.

2.3 Agricultural MRTA Research

This field is dedicated to coordinating robots
in agricultural environments while
considering domain-specific limitations. Dai
et al. (2023) were trailblazers in this area,
introducing a Multi-Objective Discrete ABC
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(MODABC) algorithm for harvesting robots,
which was then compared to modified
versions of NSGA-II and MOEA/D (Dai et al.,
2023). Guo et al. (2024) advanced this work
by proposing a Collaborative Discrete ABC
(CDABC) that incorporated multiple
neighborhood structures (Guo et al., 2024). In
terms of spraying tasks, Dong et al. (2024)
created an AMOEA that integrates non-
dominated solution data with iterative greedy
techniques (Dong et al., 2024). Kang and
associates utilized a Multi-Objective
Teaching-Learning-Based Optimization
(MOTLBO) for the allocation of weeding
robots (Wang et al., 2024). Building on this,
Wang et al. (2024) adapted the approach for
mixed groups of weeding robots and spraying
drones (Wang et al., 2024).
Though effective, these population-based
methods have certain drawbacks: their
solution representation is fixed in dimension,
hindering modeling flexibility, their operators
work on global sequences which limits the
optimization of individual routes, and they do
not have specific strategies for handling
electric robot batteries. On the other hand,
HRRA is specifically designed to address
these shortcomings. It uses a hierarchical
encoding that supports variable-length
solutions and allows for the independent
optimization of each route and robot
assignment. Importantly, it incorporates
specific mechanisms (CRRM and SRRM) to
tackle the crucial constraints of battery
capacity and load balancing, which are
essential in the AMERTA problem.

3. Problem Description and Modeling

3.1 Problem Description

The AMERTA problem takes place in a
rectangular orchard where trees are uniformly
arranged. Trees that have fruit exceeding a
certain maturity level are identified as task
nodes, while others serve as obstacles. There
are n task nodes in the orchard, each offering
a unique yield (q_i). The aim is to harvest all
the fruit. A group of identical electric
harvesting robots is based at a central depot.

Each robot has a restricted load capacity (Q)
and battery capacity (B). Robots begin their
operations fully charged and must return to
the depot to unload their harvested fruit.
Battery replacements (which require a time
t_swap) take place at the depot only when the
remaining charge is below a specific threshold
(B_th), unless a robot completes its tasks right
as the battery depletes. The energy consumed
for traveling between nodes depends on the
distance and the robot's current load. The
goals are to minimize the total makespan
(T_max) and the total energy consumption
(E_total) for all robots.

3.2 Mathematical Model

This model describes the Agricultural Multi-
Electrical-Robot Task Allocation (AMERTA)
problem, which involves planning efficient
routes for a fleet of electric harvesting robots
working in an orchard. Each task corresponds
to a fruit-bearing tree requiring harvest, and
robots operate from a central depot with
constraints on load capacity and battery
energy.
The dual optimization objectives are to
minimize total energy consumption and the
makespan (total completion time). Constraints
ensure operational feasibility, such as load
limits, battery usage, route consistency, and
assigning routes to robots effectively.
Sets and Parameters:

 N = {0, 1, ..., n}: Set of nodes (0 is the
depot).

 R = {1, ..., r}: Set of robots.

 S = {1, ..., s}: Set of all possible routes.

 d_ij: Distance between nodes i and j.

 q_i: Fruit yield at node i.

 Q: Robot load capacity (300 kg) (Dai
et al., 2023).

 W: Empty robot weight (100 kg).

 B: Battery capacity (432 kJ) (Guo et
al., 2024).
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 B_th: Battery replacement threshold
(0.2B) (Dai et al., 2023).

 g: Gravitational acceleration (9.81
m/s²) (Montoya et al., 2017).

 μ: Rolling resistance coefficient (0.05)
(Montoya et al., 2017).

 η: Energy efficiency coefficient (0.8)
(Montoya et al., 2017).

 e: Unit picking energy (0.5 kJ/kg)
(Davidson et al., 2016).

 τ: Unit picking time (7 s/kg)
(Davidson et al., 2016).

 P_max: Maximum power output (~3.9
kW) (McNulty et al., 2022).

t_swap: Battery replacement time (150 s)
(Dorling et al., 2016).
Decision Variables:

 x_ij ∈ {0,1}: 1 if a robot travels from
node i to j.

 y_i ∈ {0,1}: 1 if a battery is replaced
after task i.

 L_i ≥ 0: Cumulative load upon
departing node i.

 b_i ≥ 0: Remaining battery energy
after task i.

 z_rs ∈ {0,1}: 1 if robot r executes
route s.

Energy and Time Functions:
 Travel Energy: E_ij = [d_ij * (W +
L_i) * g * μ * 10^-3] / η

 Picking Energy: E_i^s = e * q_i for i ≠
0.

 Travel Time: T_ij = E_ij / P_max
 Picking Time: T_i^s = τ * q_i for i ≠ 0.
 Battery Swap Time: T_i^b = y_i *
t_swap

Objective Functions:
1. Minimize Total Energy: min E_total =

Σ_r∈R Σ_(i,j)∈S^r (E_ij + E_j^s)
2. Minimize Makespan: min T_max =

max_r∈R Σ_(i,j)∈S^r (T_ij + T_j^s
+ T_j^b)

Constraints: The model includes constraints
for:

 Flow conservation: Σ_j x_ij = Σ_j x_ji
for all i.

 Load tracking: L_j = Σ_i (L_i +
q_j)x_ij for j ≠ 0.

 Load capacity: L_i ≤ Q for all i.
 Energy feasibility: b_i - E_ij - E_j^s ≥
0 for all i, j.

 Battery management: Rules for
triggering swaps (y_i) and updating
b_i.

 Route assignment: Σ_r z_rs = 1 for all
s.

4. Proposed Algorithm: HRRA

The Hybrid Hierarchical Route
Reconstruction Algorithm (HRRA) is crafted
to efficiently explore the intricate solution
landscape of the AMERTA problem.

4.1 Hierarchical Solution Encoding
HRRA uses a novel two-layer encoding
structure to manage complexity.

 Layer₁ (Micro-Route Layer): Each
individual route (a single trip from
depot back to depot) is encoded as a
triplet {S_i, T_route, E_route},
representing the task sequence
(including depots), its time, and its
energy consumption. This allows for
independent evaluation and
optimization of each route.
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 Layer₂ (Macro-Scheduling Layer):
The overall solution is a structure
containing:

o A global task sequence using '-
1' as separators between robots
and '0' between routes for the
same robot.

o A mapping of the complete
task sequence S^r for each
robot r.

o Performance metrics
(E_robot_r, T_robot_r) for
each robot.

o A record of charging points.
o This hierarchy decouples route
construction from assignment,
enables efficient local
optimization, and facilitates
task adjustments between
robots.

4.2 Variable Load-Limit Dual-Phase
Initialization (VLDiM)

 Phase 1 - Route Construction: A
greedy distance-based strategy builds
initial routes. A key innovation is a
linearly decreasing load limit Q_p for
the p-th solution in the population:
Q_p = Q * (1 - (1-θ)/pnum * p). This
ensures diverse route lengths and
enhances population diversity.

 Phase 2 - Route-Robot Assignment:
Constructed routes are assigned to
robots. If the number of routes s is
greater than or equal to the number of
robots r, a MILP model minimizes
makespan for assignment. If s < r, the
longest routes are split iteratively until
s = r, ensuring a balanced initial
assignment.

4.3 Task Sequence Optimization

 Intra-Route Optimization (DRRM):
Arranges the sequence of tasks along a
single route for optimal efficiency.
Initially, it sorts tasks in descending

order based on their distance from the
depot, prioritizing tasks that require
more energy. Following this, it
employs a 2-opt local search strategy
to enhance the task sequence and
remove superfluous detours.

 Inter-Route Optimization (TRRM):
Enhances the distribution of tasks
among robots. For every optimal
solution, it carries out one of two
operations with an equal chance: 1)
Task Exchange, which involves
swapping tasks between two robots,
and 2) Task Reallocation, which
involves transferring tasks from an
overburdened robot to one with a
lighter load. This process equalizes
workloads and boosts energy
efficiency.

4.4 Specialized Route Reconstruction
Mechanisms

 Charging-Based Route
Reconstruction (CRRM): This
system enhances route efficiency by
concentrating on duties executed after
the final battery exchange. It identifies
these tasks, then rearranges their
sequence with DRRM, and allocates
them among all robots through a
MILP model. This model accounts for
the leftover charge and the task
sequences before the swap, thereby
reducing the disruptions caused by
obligatory charging pauses.

 Split-Based Route Reconstruction
(SRRM): This mechanism enhances
load distribution by pinpointing the
route that takes the longest to execute,
dividing it into two sub-routes with
nearly equal execution times through a
greedy approach, and redistributing all
routes to robots using the MILP model
from the start. This is directly aimed at
reducing makespan.

4.5 Complete Algorithmic Flow
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HRRA incorporates every component within
an evolutionary framework. Following the
initiation with VLDiM and the preliminary
DRRM optimization, the algorithm begins its
main loop. During each cycle, it performs
DRRM on the entire schedule of each robot,
utilizes TRRM for global task redistribution,
and carries out CRRM on non-dominated
solutions. The average time per iteration is
tracked, and if additional time is available,
SRRM is conducted for final refinement.
Environmental selection, utilizing non-
dominated sorting and crowding distance, is
applied to ensure a high-quality population is
maintained. The algorithm concludes by
outputting a set of Pareto-optimal solutions.
5. Experimental Studies and Analysis

5.1 Experimental Setup
A standard set of 15 problems was developed,
differing in orchard dimensions (ranging from
20x20 meters to 60x60 meters), the number of
tasks (from 40 to 720), total yield, and
maximum distance from the depot (refer to
Table 1). Each problem scenario was
examined using 4, 5, and 6 robots, leading to
45 testing scenarios. The performance of the
algorithms was assessed using the Modified
Inverted Generational Distance (IGD+) and
Hypervolume (HV) metrics. All algorithms
were evaluated on a computing platform with
a time limit of 0.5 * n seconds.
Table 1. Experimental Setup: Problem
Scenario Details

Problem Set Orchard
Dimensions (m)

Number of
Tasks

Total Yield Maximum Distance
from Depot (m)

Number of Robots
Tested

1 20 x 20 40 (Not provided) (Not provided) 4, 5, 6
… … … … … …
15 60 x 60 720 (Not provided) (Not provided) 4, 5, 6

5.2 Comparison with State-of-the-Art
Algorithms
HRRA was assessed alongside seven other algorithms: AMOEA, CDABC, MODABC, NSGA-II,
RNSGA, IALNS, and HACO. As presented in Table 2, the findings show that HRRA achieved
superior average IGD+ values in 71.1% of instances and higher HV values in 93.3% of instances.
The Wilcoxon signed-rank tests, shown in Table 3, confirmed that these improvements in
performance were statistically significant (p-value < 0.05) compared to all other contenders.
Furthermore, HRRA consistently secured the top spot in the Friedman test (see Figure 1 for
algorithm performance).
Table 2. Performance Comparison: Average IGD+ and HV Values (%) of Algorithms on 45
Problem Scenarios

Algorithm IGD+ Superior Performance (%) HV Superior Performance
(%)

HRRA 71.1 93.3

AMOEA
CDABC
MODABC

NSGA-II

RNSGA

IALNS

HACO



Available Online:

2025; 1-1 | pp.01-09

P a g e 8 |

Table 3. Wilcoxon Signed-Rank Test Results
for HRRA Compared to Competing
Algorithms

Competing
Algorithm

Statistical
Significance (p-
value < 0.05)

HRRA
Performance
Improvement
Confirmed

AMOEA Yes Yes

CDABC Yes Yes

MODABC Yes Yes

NSGA-II Yes Yes

RNSGA Yes Yes

IALNS Yes Yes

HACO Yes Yes

Performance Attribution Analysis:

 MODABC/CDABC/AMOEA: These
agricultural MRTA algorithms are
hindered by their fixed-dimension
encoding, which restricts optimization
at the route level. Additionally, they
do not have explicit methods for
managing battery limitations, resulting
in subpar performance.

 NSGA-II: Although it is a strong
general MOEA, its conventional
genetic operators have difficulty
managing the intricate feasibility
constraints of AMERTA and do not
include a specific local search for
routes.

 RNSGA: Its strength lies in its
hierarchical encoding, yet it does not
possess the particular CRRM and
SRRM mechanisms required to
effectively manage the battery and
load constraints of AMERTA.

 IALNS/HACO: These algorithms,
derived from the single-objective
EVRP, tend to converge too early in

the case of IALNS, or they lack
adequate coordination strategies for
allocating tasks among multiple robots,
as seen in HACO.

HRRA's achievement is ascribed to its
harmonious blend of hierarchical encoding,
dedicated local searchers (DRRM, TRRM),
and specialized constraint-handling
mechanisms (CRRM, SRRM), which
empower it to navigate the intricate solution
landscape of AMERTA both effectively and
efficiently.
6. Conclusion and Future Work
This paper tackled the intricate Agricultural
Multi-Electrical-Robot Task Allocation
(AMERTA) challenge, factoring in vital real-
world constraints such as speed variations
dependent on load and efficient battery
management. The introduced Hybrid
Hierarchical Route Reconstruction Algorithm
(HRRA) featured an innovative hierarchical
encoding structure along with tailored
mechanisms for route initialization, sequence
optimization, and reconstruction that
considers constraints. Comprehensive
experimental findings across 45 benchmark
instances revealed that HRRA notably
surpasses seven leading algorithms in terms of
both solution quality and diversity, as
confirmed by thorough statistical examination.
Upcoming research endeavors will
concentrate on three main areas: 1) Dynamic
Adaptation: Enhancing the model to manage
dynamic occurrences such as the arrival of
new tasks or the real-time failure of robots. 2)
Heterogeneous Teams: Integrating robots with
varying abilities (such as speed, capacity, and
battery life). 3) Cross-Domain Applications:
Investigating how the HRRA framework can
be applied to other domains, such as
warehouse logistics and urban delivery, to
assess the approach's generalizability.
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